
	 	 	

Page	1	of	77	
	

	

 
 

Promoting Scientific Creativity by 
Utilising Web-based Research Objects 

 
 
 
 
 
 
 
 
 

  
 
 
 

Project acronym: Dr Inventor 
 
 
 
 
 
 

Deliverable No. 5.4 
Repository of indexed ROs 

 
 
 



	 	 	

Page	2	of	77	
	

 
Grant agreement no: 611383 

 
	

Dissemination	Level	 	 	
PU	 	 	 Public	 X	
PP	 Restricted	to	other	programme	participants	(including	the	Commission	Services)	 	
RE	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission	Services)	 	
CO	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission	Services)	 	

	
	
COVER	AND	CONTROL	PAGE	OF	DOCUMENT	 	 	
Project	Acronym:	 Dr	Inventor	

Project	Full	Name:	 Promoting	Scientific	Creativity	by	Utilising	Web-based	
Research	Objects	

Deliverable	No.:	 D5.4	
Document	name:	 Repository	of	indexed	ROs	
Nature	(R,	P,	D,	O)1	 P	
Dissemination	Level	(PU,	PP,	
RE,	CO)2	

PU	

Version:	 1	
Actual	Submission	Date:	 23/12/2015	
Editor:	
Institution:	
E-Mail:	

Carlos	Badenes	
Ontology	Engineering	Group	(OEG),	Universidad	Politécnica	de	
Madrid	(UPM),	Madrid,	Spain	
cbadenes@fi.upm.es	

	
	
ABSTRACT:	
This	deliverable	describes	the	design	and	implementation	of	the	unified	information	service	whose	
objective	is	to	simplify	the	search	of	relevant	content	in	situations	where	multiple	heterogeneous	
non-structured	information	sources	are	involved,	such	as	web-based	Research	Objects.		
	
	
KEYWORD	LIST:	
Semantic	publishing,	Research	Object	repository		
	
	
																																																													
1	R=Report,	P=Prototype,	D=Demonstrator,	O=Other	
2	PU=Public,	PP=Restricted	to	other	programme	participants	(including	the	Commission	Services),	RE=Restricted	to	a	group	
specified	by	 the	 consortium	 (including	 the	Commission	 Services),	CO=Confidential,	 only	 for	members	 of	 the	 consortium	
(including	the	Commission	Services)	



	 	 	

Page	3	of	77	
	

The	research	leading	to	these	results	has	received	funding	from	the	European	Community's	Seventh	
Framework	Programme	(FP7-ICT-2013.8.1)	under	grant	agreement	no	611383.	

The	author	is	solely	responsible	for	its	content,	it	does	not	represent	the	opinion	of	the	European	
Community	and	the	Community	is	not	responsible	for	any	use	that	might	be	made	of	data	appearing	
therein.	

	
	
	
	
	
	
	
MODIFICATION	CONTROL	 	
Version	 Date	 Status	 Author	
0.1	 10/12/2015	 Draft	 Carlos	Badenes		
0.2	 16/12/2015	 Draft	 Rafael	Gonzalez	
0.3	 23/12/2015	 Draft	 Carlos	Badenes	
1.0	 29/12/2015	 Final	 Carlos	Badenes	
1.1	 31/12/2015	 Reviewed	 Carlos	Badenes	
1.2	 28/02/2017	 Extended	 Carlos	Badenes	
	
List	of	contributors	

− Oscar	Corcho,	OEG,	UPM.	
− Rafael	Gonzalez,	OEG,	UPM.	
− Carlos	Badenes,	OEG,	UPM.	
− Feng	Dong,	University	of	Bedfordshire.	

	
	 	



	 	 	

Page	4	of	77	
	

	

	

	

	

Contents	
	
1	 EXECUTIVE	SUMMARY	.....................................................................................................................................	5	
2	 STRUCTURE	OF	THE	DELIVERABLE	...................................................................................................................	6	
3	 DESIGN	.............................................................................................................................................................	7	

3.1	 RESOURCES	.................................................................................................................................................	7	
3.2	 STATUS	.....................................................................................................................................................	16	
3.3	 EVENT-BUS	...............................................................................................................................................	16	
3.4	 MODULES	.................................................................................................................................................	20	
3.5	 SERVICES	...................................................................................................................................................	35	

4	 APPLICATION	PROGRAMMING	INTERFACE	(API)	...........................................................................................	39	
4.1	 READING	QUERIES	......................................................................................................................................	39	
4.2	 SEARCHING	QUERIES	...................................................................................................................................	41	
4.3	 EXPLORATIVE	QUERIES	.................................................................................................................................	42	

5	 INSTALLATION	................................................................................................................................................	45	
5.1	 ONLINE	SERVICE	.........................................................................................................................................	45	
5.2	 LOCAL	INSTANCE	........................................................................................................................................	45	

6	 REFERENCES	...................................................................................................................................................	46	
APPENDIX	1	–	ABBREVIATIONS	AND	ACRONYMS	.................................................................................................	48	
APPENDIX	2	–	LEARNING	ALGORITHM	..................................................................................................................	49	

6.1	 TERMINOLOGY	EXTRACTION	..........................................................................................................................	49	
6.2	 RELATIONS	EXTRACTION	...............................................................................................................................	50	

APPENDIX	3	–	SIMILARITY	ALGORITHM	................................................................................................................	55	
6.3	 TOPIC	MODELS	..........................................................................................................................................	55	
6.4	 SIMILARITY	MEASURE	..................................................................................................................................	58	

APPENDIX	4	–	REST	API	ENDPOINTS	.....................................................................................................................	62	
6.5	 SOURCES	...................................................................................................................................................	62	
6.6	 DOMAINS	..................................................................................................................................................	65	
6.7	 DOCUMENTS	.............................................................................................................................................	67	
6.8	 ITEMS	.......................................................................................................................................................	69	
6.9	 PARTS	......................................................................................................................................................	71	
6.10	 WORDS	..................................................................................................................................................	73	
6.11	 TOPICS	...................................................................................................................................................	75	

	

  



	 	 	

Page	5	of	77	
	

1 Executive	Summary	

This	deliverable	describes	the	unified	information	access	middleware	whose	objective	is	to	simplify	
the	search	of	relevant	content	in	situations	where	multiple	heterogeneous	non-structured	
information	sources	are	involved,	such	as	web-based	Research	Objects	(ROs)	.	

It	combines	access	and	search	activities	to	different	information	sources,	that	are	associated	to	the	
products	of	scientific	research,	encapsulating	and	relating	the	meaning	of	the	knowledge	objects	
that	they	contain,	offering	thus:	

• A	 structured	 information	 space	 view,	 where	 the	 involved	 entities,	 their	 taxonomies	 and	
topics	are	explicitly	annotated	and	can	be	used	to	explore	the	information	space.	

• A	 coherent	 information	 space	 view	 that	 abstracts	 away	 from	 the	 multiple	 information	
sources,	 providing	 a	 single	 search	 and	 access	 interface	 in	 a	 transversal	 content-oriented	
manner.	

The	service	is	available	via	a	REST	API	at	http://drinventor.dia.fi.upm.es/api	,	the	code	is	available	at	
https://github.com/librairy	,	and	some	results	are	showed	at	http://drinventor.dia.fi.upm.es	.	

	

	

		

	

	

	



	 	 	

Page	6	of	77	
	

2 Structure	of	the	deliverable	

This	document	is	organized	as	follows:		Section	3	shows	technical	details	about	the	proposed	system.	
In	Section	4	we	describe	the	Application	Programming	Interface	(API)	used	to	explore	documents	
and	Section	5	presents	a	complete	use-case	from	the	point	of	view	of	an	end-user.	Finally,	Section	6	
explains	the	steps	to	install	and	run	the	service.	



	 	 	

Page	7	of	77	
	

3 Design	

The	Repository	of	Indexed	Research	Objects	(librairy)	is	a	system	composed	by	six	loosely-coupled	
modules	connected	by	an	event-bus	using	standardized	data	protocols	and	formats.	

	

Figure	1.	System	Architecture	

It	follows	a	Staged	Event-Driven	Architecture	(SEDA)	[1]	that	decomposes	the	flow	into	a	set	of	
modules	connected	by	queues.	When	a	new	research	content	is	published	or	modified	from	a	source	
or	when	someone	submits	a	new	document,	a	new	event	is	created	and	handled	in	the	system	to	
update	or	to	build	new	relationships	between	this	new	resource	and	others.	

Next	we	provide	a	list	of	modules	and	their	responsibility:	

• Api:	deploys	the	web	interface	to	allow	executing	operations	on	the	system.	

• Hoarder:	pools	external	repositories	to	download	resources.	

• Harvester:	retrieves	text	and	meta-information	from	resources	to	create	domain	entities.	

• Learner:	identifies	relevant	terms	and	discovers	relations	among	them	from	a	domain.	

• Modeler:	creates	internal	models	to	represent	and	categorize	domain	entities.	

• Comparator:	measures	the	analogy	between	domain	entities	according	to	the	models.	

3.1 Resources	
The	system	is	updated	with	both	gathered	and	submitted	information	internally	modeled	as	
resources.	A	resource	is	an	abstract	representation	of	the	information	described	by	the	type	of	
content	and	the	status.	

The	states	are	common	for	all,	but	the	type	of	content	depends	on	each	of	them:	

• Document:	meta-information	retrieved	from	a	research	object.		A	document	is	composed	by	
a	set	of	items.	

• Item:	each	of	the	elements	that	make	up	a	research	object	(i.e.	a	document)	such	as	a	paper,	
programming-code,	an	image,	a	workflow,	and	so	on.	



	 	 	

Page	8	of	77	
	

• Part:	logical	division	inside	an	item	based	on	aspects	such	as	sections	of	the	research	article	
(i.e.	abstract	,	introduction,	method,	results,	discussion	and	conclusion)	or	the	rhetorical	class	
of	the	sentences3	(i.e.	approach,	background,	challenge,	future-work	and	outcome).	

• Word:	a	term,	entity	or	any	other	textual	unit	that	composes	a	text.	

	

Figure	2.	System	Resources	

• Source:	repository	of	documents.	

• Domain:	set	of	documents.	

• Topic:	 abstract	 concept	 described	 by	 a	 set	 of	words	 that	 represents	 a	 research	 area	 or	
subject	in	a	domain.	

• Relation:	associative	or	semantic	connection	between	words	in	a	domain.	

• Analysis:	study	performed	in	a	domain.	Responsible	for	the	creation	of	topics	and	relations.	

	

Figure	3.	Representation	of	a	paper	in	the	system.	

																																																													
3	http://backingdata.org/dri/library/1.0.5/doc/edu/upf/taln/dri/lib/model/ext/RhetoricalClassENUM.html	



	 	 	

Page	9	of	77	
	

To	better	understand	this	representation,	let’s	see	an	example.	Consider	that	we	want	to	add	a	
paper	(	like	the	pdf	file	seen	in	the	Figure	3)	to	the	system.	A	new	document	will	be	created	with	
information	about	the	title,	the	author(s),	the	publisher	and	the	language.	

A	new	item	containing,	in	this	case,	the	same	title,	the	same	authors,	the	published-date,	the	
language,	the	format	(pdf)	and	the	key-words	will	be	also	created.	Moreover,	this	item	will	be	
associated	to	several	parts,	each	of	them	grouping	sentences	by	their	rhetorical	class	(e.g.	approach,	
background,	challenge,	future	work	and	outcome)		or	by	their	section	(e.g	abstract,	introduction).			

3.1.1 Source	
A	source	is	a	repository	of	research	objects.		It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	sources/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-86014.	

− name:	a	label	associated	to	the	resource.	

− description:	additional	information	about	it.		

− url:	the	Uniform	Resource	Locator	of	the	repository.	

− protocol:	defines	how	the	digital	content	is	published.	

A	source	may	contain	zero	or	more	references	to	documents	and	a	document	may	have	one	or	more	
references	to	sources,	i.e.	the	same	document	can	be	available	in	more	than	one	source.	

	

Figure	4.	Range	and	domain	of	a	Source.	

It	may	be	a	static	or	a	dynamic	repository:	

• Static:	repository	that	will	not	change	along	time.	So,	once	processed,	new	information	will	
never	be	available	from	it	again.	It	can	be	a	single	file	(e.g.	
http://world.std.com/~rjs/indinf56.pdf)	or	a	closed	time-based	expression	for	an	
open	archive	service	(e.g.	
http://www.worldsciencepublisher.org/journals/index.php/AASS/oai?from=2012-

01-01T00:00:00).	

• Dynamic:	repository	that	may	have	new	documents	in	the	future,	such	as	an	open	archive	
publisher	(e.g.	http://oa.upm.es/perl/oai2),	a	RSS	feeder	(e.g.	
http://rss.slashdot.org/Slashdot/slashdot)	,		a	remote	folder	(e.g.	
//192.168.5.125/Public/papers)	or	even	a	web	page	(e.g.	
https://en.wikipedia.org/wiki/Artificial_Intelligence).	This	type	of	resources	will	
be	continuously	polled	by	the	hoarder	module.	

																																																													
4	http://www.iso.org/iso/home/standards/iso8601.htm	



	 	 	

Page	10	of	77	
	

Currently,	The	Open	Archives	Initiative	Protocol	for	Metadata	Harvesting	(OAI-PMH)5	and	Really	
Simple	Sindication	(RSS)6	are	the	protocols	supported	by	our	system.	Future	integrations	will	be	done	
to	allow	sources	such	as	Dropbox7,	CIFS/SMB,	FTP/FTPS,	Elsevier	API8,	Figshare	API9,	arXiv	API10,	DBLP	
Corpora11,	Research	Gate,	Mendeley12	and	CiteSeer[2].	More	details	about	how	to	include	a	new	
protocol	are	shown	in	the	Hoarder	Section	of	this	document.	

3.1.2 Domain	
A	domain	is	a	logical	grouping	of	documents.	It	defines	the	workspace	for	the	modeler	and	the	
learner	module.	By	default,	all	sources	have	an	associated	domain	with	their	documents.	

It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	domains/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− name:	a	label	associated	to	the	resource.	

− description:	additional	information	about	it.		

	

	

Figure	5.	Range	and	domain	of	a	Domain.	

Furthermore,	a	domain	can	contain	zero	or	more	references	to	documents	and	a	document	may	be	
referenced	by	one	or	more	domains.	

3.1.3 Document	
A	document	contains	all	the	meta-information	associated	to	the	publication,	according	to	the	Open	
Archives	Initiative	for	Object	Reuse	and	Exchange13	(OAI-ORE)	manifest	for	research	objects	and	the	
Dublin-Core	Metadata	Annotation14,		it	could	include:	

																																																													
5	http://www.openarchives.org	
6	http://www.rssboard.org/rss-specification	
7	https://www.dropbox.com/developers	
8	http://dev.elsevier.com/	
9	http://api.figshare.com/docs/intro.html	
10	http://arxiv.org/help/api/index	
11	http://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset	
12	http://dev.mendeley.com	
13	http://www.openarchives.org/ore/1.0/toc.html	
14	http://dublincore.org/documents/1999/07/02/dces/	



	 	 	

Page	11	of	77	
	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	documents/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− publishedOn:	 the	 time	 the	 resource	 was	 published.	 t	 must	 be	 a	 formatted	 timestamp	
following	ISO-8601.	

− publishedBy:	 an	entity	 responsible	 for	making	 the	document	 available.	 It	 can	be	a	person,		
an	organization	or	a	service.	 	 It	may	be	different	 from	the	entity	 that	conceptually	 formed	
the	 resource	 (e.g.	 wrote	 the	 document),	 which	 should	 be	 recorded	 as	 authoredBy.	 This	
entity	 should	 be	 identified	 by	 a	 valid	 Uniform	 Resource	 Identificator	 (URI),	 e.g.	WebId15,	
orcid16	or	internal	URI.	

− authoredOn:	 	 the	 time	 the	 research	was	 conceptually	 formed.	 The	author	 time	 should	be	
present	if	different	from	publishedOn.	It	must	be	a	formatted	timestamp	following	ISO-8601.	

− authoredBy:	an	entity	primarily	responsible	for	making	the	content	of	the	document.	It	may	
be	a	 list	 to	 indicate	multiple	authors.	Each	of	them	identified	by	a	valid	URI,	e.g.	WebId17	 ,	
orcid18	or	internal	URI.	

− retrievedFrom:	 a	 URI	 identifying	 the	 source	 from	 which	 the	 document	 was	 derived.	 This	
property	should	be	accompanied	with	retrievedOn.		

− retrievedOn:	 the	 time	 the	 document	 was	 retrieved	 on.	 If	 this	 property	 is	 present,	 then	
retrievedFrom	must	also	be	present.	It	must	be	a	formatted	timestamp	following	ISO-8601.	

− format:	the	physical	or	digital	manifestation	of	the	resource.	Typically,	it	includes	the	media-
type,	i.e.	the	IANA19	code,	of	the	document.	

− language:	 the	 language(s)	 in	which	 the	 document	 is	 specified.	 It	 is	 defined	 by	 RFC-176620	
which	 includes	 a	 two-letter	 language	 code	 followed,	 optionally,	 by	 a	 two-letter	 country	
code.	

− title:	a	name	given	to	the	document.	It	is	a	name	by	which	the	document	is	formally	known.	

− subject:	 keywords,	 key	 phrases	 or	 classification	 codes	 annotated	 by	 the	 authors	 that	
describe	a	topic	of	the	resource.	

− description:	an	account	of	the	content	of	the	document.	It	may	include	but	is	not	limited	to	
an	abstract,	or	a	free-text	account	of	the	content.	

− rights:	information	about	rights	held	in	and	over	the	document.		

	

Furthermore	,	a	document	may	contain	zero	or	more	items.	In	turn,	an	item	can	belong	to	one	or	
more	documents.	
																																																													
15	http://www.w3.org/wiki/WebID	
16	http://orcid.org	
17	http://www.w3.org/wiki/WebID	
18	http://orcid.org	
19	http://www.iana.org/assignments/media-types/media-types.xhtml	
20	http://www.ietf.org/rfc/rfc1766.txt	



	 	 	

Page	12	of	77	
	

Since	librairy	can	also	discover	analogies	among	documents,	a	document	may	contain	zero	or	more	
references	to	other	documents.	

	

Figure	6.	Range	and	domain	of	a	document.	

3.1.4 Item	
An	item	is	each	of	the	elements	that	make	up	a	document	(i.e.	the	files	bundled	in	a	research	object).	
It	may	be	a	paper,	programming-code,	an	image,	a	workflow	or	any	other	media	content.		

It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	items/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− authoredOn:	 	 the	 time	 the	 research	was	 conceptually	 formed.	 The	author	 time	 should	be	
present	if	different	from	publishedOn.	It	must	be	a	formatted	timestamp	following	ISO-8601.	

− authoredBy:	an	entity	primarily	responsible	for	making	the	content	of	the	document.	It	may	
be	a	 list	 to	 indicate	multiple	authors.	Each	of	them	identified	by	a	valid	URI,	e.g.	WebId21	 ,	
orcid22	or	internal	URI.	

− format:	the	physical	or	digital	manifestation	of	the	resource.	It	includes	the	media-type,	i.e.	
the	IANA23	code.	

− language:	the	language(s)	in	which	it	is	specified.	It	is	defined	by	RFC-176624	which	includes	a	
two-letter	Language	code	followed,	optionally,	by	a	two-letter	country	code.	

− title:	a	name	given	to	the	item.	It	is	a	name	by	which	the	item	is	formally	known.	

− subject:	 keywords,	 key	 phrases	 or	 classification	 codes	 annotated	 by	 the	 authors	 that	
describe	a	topic	of	the	resource.	

− description:	an	account	of	the	content	of	the	document.	It	may	include	but	is	not	limited	to	
an	abstract,	or	a	free-text	account	of	the	content.	

− url:	path	to	the	file.	e.g.	pdf	file	path,	png	file	path.	

− content:	textual	annotation	about	the	file.	When	it	is	a	paper,	it	contains	the	raw-text	of	the	
paper.	When	it	is	an	image,	it	contains	the	textual	description	of	the	image.		

																																																													
21	http://www.w3.org/wiki/WebID	
22	http://orcid.org	
23	http://www.iana.org/assignments/media-types/media-types.xhtml	
24	http://www.ietf.org/rfc/rfc1766.txt	



	 	 	

Page	13	of	77	
	

	

	

Figure	7.	Range	and	domain	of	a	item.	

Furthermore,	an	item	may	contain	zero	or	more	parts	and	one	or	more	words.	In	turn,	a	part	only	
belongs	to	one	item,	and	a	word	can	belong	to	one	or	more	items.	

Since	librairy	can	also	discover	analogies	among	items,	an	item	may	contain	zero	or	more	references	
to	other	items.	

3.1.5 Part	
A	part	is	a	logical	section	in	an	item.	When	an	item	is	a	paper,	for	instance,	it	will	have	as	parts	the	
rhetorical	classes	identified	in	the	sentences	of	its	textual-content.	It	contains	the	following	
information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	parts/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− sense:	content-type.	It	could	be	a	rhetorical	class	such	as	background,	approach,	challenge,	
future-work	or	outcome;	or	a	section	in	the	text	such	as	introduction,	abstract,	discussion,	
conclusion,	results	or	method;	or	any	other	label	used	to	classify	parts	of	a	text.	

− content:	 text	 retrieved	 from	the	 text	of	 the	 item,	 sharing	 the	same	class	 in	a	classification	
(i.e.	content-type).	

Furthermore,	a	part	can	contain	one	or	more	words	and	a	word	can	be	referenced	by	one	or	more	
parts.	

	

Figure	8.	Range	and	domain	of	a	part.	

Since	librairy	can	also	discover	analogies	among	parts,	a	part	may	contain	zero	or	more	references	
to	other	parts.	

	



	 	 	

Page	14	of	77	
	

3.1.6 Word	
A	word	is	a	term	or	an	entity	(i.e.	person,	organization	or	place)	or	any	other	meaningful	unit	
contained	in	a	text.	It	may	include	linguistic	annotations	such	as	lemma,	stem	and	part-of-speech	
(POS).	

It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	words/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− content:	the	alphanumeric	character	string.	

− lemma:	the	word	which	stands	at	the	head	of	a	definition	in	a	dictionary.	

− stem:	the	root	of	the	word.	

− pos:	(part-of-speech)	the	syntactic	category	of	the	word.	

− type:	term	or	entity.		

	

3.1.7 Topic	
A	topic	is	an	abstract	concept	described	by	a	sorted	list	of	words	that	represents	a	research	area	or	
subject	in	a	domain.	The	order	means	the	relevance	of	the	word	in	the	topic.	

It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	 topics/de305d54-75b4-431b-adb2-eb6b9e546014.	 URIs	 from	 external	 services	
describing	synsets	(e.g.	BabelNet)	will	also	be	used	in	future.	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− content:	an	account	of	the	meaning	of	the	topic.	Usually,	it	is	the	top	15	relevant	words.	

	

	

Figure	9.	Range	and	domain	of	a	topic.	



	 	 	

Page	15	of	77	
	

Furthermore,	a	topic	contains	one	or	more	words	and	one	or	more	analyses.	In	turn,	a	word	can	be	
referenced	by	zero	more	topics	and	an	analysis	can	be	referenced	by	zero	or	more	topics.		

Since	topics	are	also	used	to	represent	resources,	they	are	also	referenced	by	one	or	more	
document,	item	and	parts.	

3.1.8 Relation	
A	relation	is	an	associative	or	semantic	link	between	words.	When	they	are	entities,	the	relation	will	
be	associative.	When	they	are	terms,	the	relation	will	be	semantic.	

It	contains	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	topics/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− type:		associative	or	semantic.	

− describes:	more	details	about	the	relationship,	e.g.	antonymy,	meronymy,	etc.	

	

	

Figure	10.	Range	and	domain	of	a	relation.	

Furthermore,	a	relation	contains	two	words	and	one	or	more	analyses.	In	turn,	a	word	can	be	
referenced	by	zero	or	more	relations	and	an	analysis	can	be	referenced	by	zero	or	more	relations.	

3.1.9 Analysis	
An	analysis	is	a	study	about	the	documents	contained	in	a	domain.	It	is	mainly	focused	on	items	but	
may	also	include	parts	for	deeper	analyses	.	Its	main	purpose	is	to	discover	topics	and	relations	in	
the	domain	and	calculate	the	similarity	values	among	its	documents.	

It	may	contain	the	following	information:	

− uri:	the	Uniform	Resource	Identifier	created	by	the	system	to	uniquely	identify	it.	It	must	be	
a	Universally	Unique	Identifer	(UUID)	along	with	a	prefix	identifying	the	type	of	the	resource:	
e.g	analysis/de305d54-75b4-431b-adb2-eb6b9e546014	

− creation-time:	date	on	which	this	resource	was	created.	It	must	be	a	formatted	timestamp	
following	ISO-8601.	

− description:	details	about	the	algorithm	used	for	the	analysis.	

− configuration:		details	about	the	parameters	of	the	algorithm.	

− report:	scheme	containing	a	representation	of	each	resource	analyzed.	



	 	 	

Page	16	of	77	
	

	

NOTE:	Future	works	will	include	a	more	detailed	parameterization	of	the	algorithms	performed	
during	the	analysis	process.	

	

Figure	11.	Range	and	domain	of	analysis.	

Furthermore,	an	analysis	contains	only	one	domain,	and	can	be	referenced	by	one	or	more	domains.	

3.2 Status	
A	resource	can	have,	at	a	time,	one	of	these	status:	

• created:	initial	action.	The	first	status	of	a	resource.	

• updated:	the	resource	has	changed.	

• deleted:	the	resource	was	removed.	

	

Figure	12.	Resource	status.	

3.3 Event-Bus	
Following	a	publisher/subscriber	approach,	all	the	modules	in	the	system	can	publish	and	read	
events	to	notify	and	to	be	notified	about	the	system	state.	

For	example,	when	a	new	domain	is	created,	an	event-message	will	be	published	to	the	channel:	
domain.created.	This	event	will	be	managed	by	the	learner	module	to	begin	to	analyze	all	the	
items	in	that	domain	and	also	by	the	modeler	module	to	begin	to	build	models	which	represent	
these	items.	Therefore,	the	system	flow	is	not	unique	and	is	not	directly	implemented,	instead	
parallel	and	emergent	flows	can	appear	according	to	particular	actions	on	resources.	

We	use	the	Advanced	Message	Queuing	Protocol25	(AMQP)	as	our	messaging	standard	to	avoid	any	
cross-platform	problem	and	any	dependency	to	the	selected	message	broker.	This	protocol	defines	
the	following	elements:	exchange,	queue	and	routing-key.	

In	this	scenario,	a	producer	module	sends	a	message	to	the	exchange	element,	instead	of	a	queue,	
along	with	a	routing-key.	That	exchange	may	be	bound	to	queues	through	topic	and	group	bindings	
defined	by	a	module.	A	topic	binding	is	a	directive	indicating	what	messages	should	be	routed	from	
																																																													
25	http://www.amqp.org	



	 	 	

Page	17	of	77	
	

an	exchange	to	a	queue.	The	group	binding	allows	system	to	deliver	a	message	only		to	one	
consumer	sharing	the	same	group	value,	getting	a	dynamic	distribution	of	load	between	them.	

	

	

Figure	13.	flow	of	the	‘domain.created’	event.	

Consumer	modules	 listening	 to	queues	bounded	 to	 the	exchange	by	a	 topic	binding	 that	match	 to	
the	routing-key	used	to	sent	the	message,	will	receive	that	message.	

We	adopted	the	exchange	paradigm	for	building	our	event-bus.	Thus,	every	module	(i.e.	api,	learner,	
modeler,	etc)	defines	the	kind	of	events	to	listen	by	the	binding-key	used	to	bound	its	queue	to	the	
exchange.	The	messages	are	sent	with	a	routing-key	to	queues	using	a	binding-key	that	matches	with	
that	 routing-key.	 These	 queues	 are	 not	 shared	 among	 different	 modules,	 but	 yes	 among	 the	
instances	of	the	same	module	when	the	system	is	running	on	a	cluster.	

Considering	only	systems	that	offer	persistence	and	replication	as	well	as	routing,	delaying	and	re-
delivering	implementing	the	AMQP	protocol,	we	used	the	RabbitMQ	Message	Broker26.	

3.3.1 Routing-Key	
In	general,	a	routing-key	can	be	defined	by	a	list	of	words	delimited	by	dots.	In	our	case,	it	consists	of	
only	two	words	separated	by	one	dot:		

<resource>.	<status>	

The	first	part	identifies	the	resource	associated	to	the	event,	and	the	second	one	is	its	current	status.	
For	instace,	document.created,	domain.updated,	item.deleted.	

3.3.2 Binding-Key	
An	exchange	 is	 bound	 to	queues	 through	binding-keys	 composed	by	a	 topic-key	and	a	group-key.	
Messages	will	be	delivered	to	those	queues	bound	to	the	exchange	with	a	binding-key	that	matches	
with	the	routing-key	of	the	message.	

The	topic-key	is	defined	in	the	same	way	that	the	routing-key,	so	it	is	also	composed	by	two	words	
separated	by	one	dot:		

																																																													
26	http://www.rabbitmq.com	



	 	 	

Page	18	of	77	
	

<resource>.<status>	

There	are	two	special	cases	for	matching	a	topic-key:	

• ‘*’	:	it	means	that	it	can	be	substituted	by	exactly	one	word	(e.g.	*.created	listen	for	all	
new	resources	added	to	the	system).	

• ‘#’	:	it	means	that	it	can	be	substituted	by	zero	or	more	words	(e.g.	‘#’	listen	for	all	resources	
in	any	status).	

The	group-key	is	a	text	string	that	allows	different	clients	to	join	in	the	same	queue	to	distribute	the	
events	among	them.		

Complete	examples	about	routing	are	shown	in	the	next	section	“Scenarios”.	

3.3.3 Messages	
Usually,	 the	content	of	a	message	 is	a	string	of	characters	 in	a	 Javascript	Object	Notation27	 (JSON)	
format.	 But	 also,	 it	may	 be	 an	 array	 of	 bytes	 serialized	 in	 a	 particular	way.	 Our	 event-bus	 allows	
clients	to	use	both	formats.	The	type	of	the	event,	i.e.	its	routing-key,	defines	implicity	the	format	of	
the	message	to	be	understood	by	both	producer	and	consumer.	

Except	special	cases,	 the	message	will	be	a	text	 in	JSON	format	with	only	one	field:	 the	URI	of	the	
resource.		

{ “uri”: “string” } 

Thus,	for	example,	the	message	associated	to	the	creation	of	a	new	source,	i.e	routing-key	equals	to	
source.created,	will	be:		

{ “uri”: “sources/2233-23233-1192-30” } 

3.3.4 Scenarios	
In	order	 to	understand	 the	behaviour	of	our	event-bus,	 let’s	 see	 some	examples	 for	 the	 following	
configuration	shown	in	figure	14.	

3.3.4.1 S1:	Different	topic-keys	and	group-keys	

In	this	case,	the	values	may	be:		

• Topic_A	=	document.created 

• Topic_B	=	document.deleted 

• Group_A	=	harvester 

• Group_B	=	modeler 

																																																													
27	http://www.json.org	



	 	 	

Page	19	of	77	
	

Then,	 when	 a	 producer	 sends	 a	 message	 to	 the	 routing-key:	 ‘document.created,	 only	 the	
Consumer1	will	receive	the	message.	If	the	message	had	been	sent	to	‘document.deleted,	only	
the	Consumer2	would	have	received	the	message.	

So,	in	this	scenario,	consumers	are	listening	for	different	messages.	

	

	

Figure	14.	Producer	and	consumers	connected	to	event-bus.	

3.3.4.2 S2:	Same	topic-keys	and	different	group-keys	

In	this	case,	the	values	may	be:		

• Topic_A	=	document.created 

• Topic_B	=	document.created 

• Group_A	=	harvester 

• Group_B	=	modeler 

When	a	producer	sends	a	message	to	the	routing-key:	‘document.created,	both	Consumer1	and	
Consumer2	will	receive	that	message.	

So,	 in	 this	 scenario,	 the	message	will	be	duplicated	among	consumers	which	have	 the	same	 topic-
key.	

3.3.4.3 S3:	Different	topic-keys	and	same	group-keys	

In	this	case,	the	values	may	be:		

• Topic_A	=	document.created 

• Topic_B	=	document.deleted 

• Group_A	=	harvester 



	 	 	

Page	20	of	77	
	

• Group_B	=	harvester 

When	a	producer	sends	a	message	to	the	routing-key:	‘document.created,	only	the	Consumer1	
will	 receive	 the	 message.	 When	 a	 producer	 sends	 the	 message	 to	 the	 routing-key:	
‘document.deleted,	only	the	Consumer2	will	receive	it.		

In	this	scenario,	the	consumers	are	listening	for	different	messages.	The	common	group-key	has	no	
effect	because	the	topic-keys	are	different.	

3.3.4.4 S4:	Same	topic-keys	and	group-keys	

In	this	case,	the	values	may	be:		

• Topic_A	=	document.created 

• Topic_B	=	document.created 

• Group_A	=	harvester 

• Group_B	=	harvester 

When	 a	 producer	 sends	 a	 message	 to	 the	 routing-key:	 ‘document.created,	 only	 one	 of	 the	
consumers	will	receive	the	message.	By	default,	a	round-robin	approach[3]	is	defined	to	dispatch	this	
type	of	messages.	

In	this	scenario,	the	message	is	balanced	among	consumers	listening	for	the	same	route.	

3.4 Modules		
Currently,	the	service	is	composed	by	six	modules,	each	of	them	with	different	responsibilities.		

3.4.1 Api	
This	module	 provides	 an	 interface	 to	 the	 end-user.	 	 Any	 operation	 requested	 by	 the	 user	will	 be	
handled	 by	 it.	 Some	of	 these	 operations,	 usually	 those	 related	 to	 read	 some	 information	 about	 a	
resource,	will	be	directly	managed	by	this	module	getting	the	data	directly	from	the	internal	storage.	

	

Figure	15.	Workflow	associated	to	a	DELETE	operation	from	the	API	module.	



	 	 	

Page	21	of	77	
	

However,	 those	 operations	 that	 imply	 a	 modification	 of	 the	 status	 of	 some	 resource,	 will	 be	
performed	by	other	modules	notified	by	an	event-message	published	at	the	event-bus.	This	message	
includes	the	URI	of	the	resource	and	will	be	published	at	a	channel	that	describes	its	status.	

This	workflow	implies	that	some	requests	cannot	be	answered	using	the	HTTP	200	code.	Instead,	the	
system	will	 answer	with	 the	HTTP	 202	 code	 indicating	 that	 the	 instruction	was	 accepted	 and	 the	
resource	was	marked	for	that	operation.	

3.4.1.1 Routing-Keys	

This	module	is	listening	for	the	following	routing-keys:	

• topic.created 

• relation.created 

• analysis.created 

This	module	publishes	to	the	following	routing-keys:	

• source.{created| updated | deleted} 

• domain.{created| updated | deleted} 

• document.{created| updated | deleted } 

• item.{created| updated | deleted } 

• part.{created| updated | deleted } 

• word.{created| updated | deleted } 

• topic.{updated | deleted } 

• relation.{updated | deleted }	

• analysis.{updated | deleted }	

	

3.4.1.2 Use-Case	

Let’s	start	a	simple	example	of	use	of	this	module.	Imagine	that	a	user	wants	to	analyze	all	the	
papers	published	by	the	UPM	Digital	Repository	during	year	2014.	

So,	he/she	creates	a	new	source	doing	a	POST	request	on	the	/sources/	uri	attaching	a	valid	json	
with	the	url:	oaipmh://oa.upm.es/perl/oai2?in=2014.	

The	api	module	will	create	a	new	source	with	that	url	and	the	time	filter.	After	that,	it	will	store	it	in	
the	internal	storage	and	will	publish	a	new	event	in	the	channel:	source.created	with	the	new	
uri,	e.g	sources/	c941b900-a310-11e5-803e-0002a5d5c51b.	



	 	 	

Page	22	of	77	
	

	

Figure	16.	Api	Module	use-case.	

3.4.2 Hoarder	
This	module	is	responsible	for	downloading	remote	files	from	sources	which	were	previously	added	
to	 the	system	by	 the	Api	module.	Thus,	 it	 is	 listening	 for	events	published	 in	 the	event-bus	with	a	
routing-key	that	matches	with:	‘source.#’	.	

	

Figure	17.	Hoarder	module.	

Multiple	threads	are	continuously	looking	for	changes	in	a	list	of	valid	sources.	These	sources	can	be	
remote	web	services	publishing	digital	 content	under	 the	OAI	 specification28	or	 following	 the	Web	
Feed	format	(e.g	rss,	atom).	In	future,	they	may	be	journal	websites	such	as	Elsevier29,	Springer30	or	
even	 websites	 as	 Wikipedia31.	 Moreover,	 anyone	 can	 manually	 add	 content	 to	 our	 system	 using	
cloud	storage	services	or	file-sharing	services.	

This	module	can	work	in	synchronous	or	asynchronous	mode:	

																																																													
28	http://www.openarchives.org/OAI/openarchivesprotocol.html	
29	https://www.elsevier.com	
30	http://www.springer.com/gp/	
31	https://www.wikipedia.org	



	 	 	

Page	23	of	77	
	

• In	 the	asynchronous	mode,	 it	 polls	 the	 source	 periodically	 for	 new	 content.	When	 a	 new	
resource	is	detected,	it	will	download	the	file(s)	along	with	the	meta-information,	if	it	exists.	
All	 these	files	are	moved	to	a	shared	folder	with	the	Harvester	module.	This	work	mode	 is	
typical	 for	 sources	 related	 to	 publishing	 services,	 e.g.	 Elsevier,	 Springer,	 RSS	 Server,	 LAN	
folders.	

• In	the	synchronous	mode,	it	only	downloads	the	data	when	the	new	source	is	added.	After	
that,	no	more	requests	are	executed	on	that	source.	This	work	mode	 is	 typical	 for	sources	
related	to	remote	files,	e.g.	zip	file	in	Dropbox.	

This	module	has	a	particular	behaviour	because	it	does	not	publish	events	to	the	event-bus,	instead	
it	downloads	resources	to	a	shared	folder	with	the	Harvester	module.	

At	 this	 stage,	 the	 resources	 have	 not	 been	 processed	 yet.	 Domain	 entities	 are	 not	 created	 until	
Harvester	module	process	them.	

3.4.2.1 Supported	Protocols	

In	 the	 deployed	 version	 of	 librairy,	 we	 have	 considered	 as	 sources	 of	 information	 both	 OAI-PMH	
Data	Providers	 (e.g.	openarchives.org)	 and	RSS	Sites	 (e.g.	 rss.slashdot.org).	 The	 inherent	 idea	 is	 to	
force	the	module	to	handle	different	protocol	specifications	based	on	common	steps	typical	for	data	
providers.	Both	RSS	and	OAI-PMH	providers	should	publish	the	meta-information	using	dublin-core	
terms	and	also	publish	 it	 in	 a	 passive	way,	 i.e.	waiting	 for	 a	previous	 request	 defining	 a	 temporal	
window	to	list	all	the	available	resources.	However,	OAI-PMH	Data	Providers	usually	publish	related	
files	 (pdf,	 doc,	 etc)	 that	 have	 to	be	downloaded	 separately	 from	 the	meta-information,	while	RSS	
Sites	always	include	the	content	and	the	meta-information	in	the	same	resource.	

Taking	 into	 account	 these	 features,	 the	 first	 step	 was	 to	 choose	 an	 integration	 framework	 that	
enabled	us	to	represent	these	differences	and	to	reuse	the	common	actions.	In	Java	there	are	mainly	
three	 frameworks:	 Spring-Integration32,	 Mule-Enterprise	 Service	 Bus	 (Mule-ESB)33	 and	 Apache	
Camel34	with	these	features.	All	these	solutions	are	known	to	implement	the	well-known	Enterprise	
Integration	 Patterns	 (EIP)35	 offering	 a	 standardized	 domain-specific	 language	 to	 integrate	
applications	and	a	set	of	adapters	to	support	integration	with	common	external	services	such	as	FTP,	
WS-REST,	AMQP	services	and	so	on.	

Taking	 into	 account	 that	 they	 all	 are	 open-source	 and	 they	 have	 special	 features	 such	 as	 error	
handling,	 transactions,	 multi-threading,	 scalability	 and	 monitoring,	 and	 so	 on,	 the	 really	
discriminative	 aspects	 between	 them	 are	 the	 number	 of	 supported	 technologies,	 the	 domain-
specific	 language	 (DSL)	 used	 and	 the	 facilities	 to	 create	new	adapters.	 In	 fact,	 our	 hoarder	 has	 to	
communicate	with	 OAI-PMH	 providers,	 so	we	 need	 to	 develop	 a	 new	OAI-PMH	 adapter.	 For	 this	
reason,	 the	 procedure	 to	 create	 new	 adapters	 is	 a	 key	 feature	 for	 us,	 as	 well	 as	 having	 a	 large	

																																																													
32	http://projects.spring.io/spring-integration/	
33	https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb	
34	http://camel.apache.org.	
35	http://www.enterpriseintegrationpatterns.com	



	 	 	

Page	24	of	77	
	

number	of	existing	components	easy-to-integrate	with	other	frameworks.	Finally,	we	decided	to	use	
Apache	Camel36		as	our	integration	framework	to	defines	routes	and	workflows.	

	

Figure	18.	Camel	route	for	polling	the	UPM	OAI-PMH	Data	Provider.	

3.4.2.1.1 OAI-PMH	Camel	Component	

We	 have	 developed	 a	 new	 camel	 component37	 for	 polling	 OAI-PMH	 Data	 Providers.	 It	 allows	 to	
create	Camel	 routes	with	an	OAI-PMH	Provider	as	 source	and	also	 converts	 from	OAIPMHType	 to	
XML	 format	 (marshal)	 or	 from	 XML	 to	 OAIPMHType	 format	 (unmarshal)	 using	 the	 OAI-PMH	 XML	
Schema	 definition38.	 The	 purpose	 of	 this	 feature	 is	 to	 make	 it	 possible	 to	 use	 Camel’s	 built-in	
expressions	 for	 manipulating	 OAI-PMH	 messages.	 As	 shown	 in	 figure	 19,	 an	 XPath	 (XML	 Path	
Language)39	expression	can	also	be	used	to	filter	the	OAI-PMH	message.	

We	have	defined	some	options	to	customize	the	behaviour	of	this	component:	

• delay:	Delay	in	milliseconds	between	each	poll.	

• initialDelay:	Milliseconds	before	polling	starts.	

• userFixedDelay:	Set	to	true	to	use	fixed	delay	between	pools,	otherwise	fixed	rate	is	used.	

• verb:	OAI-PMH	command	such	as	ListRecords,	ListIdentifiers,	Identify.	

• metadataPrefix:	Specifies	 the	metadataPrefix	of	 the	 format	that	should	be	 included	 in	the	
metadata	part	of	the	returned	records.	

• from:	 Specifies	 a	 lower	 bound	 for	 datestamp-based	 selective	 harvesting.	 UTC	 DateTime	
value.	After	first	request,	this	value	is	updated	to	current	time	if	no	upper	bound	is	defined	

• until:	 Specifies	 an	 upper	 bound	 for	 datestamp-based	 selective	 harvesting.	 UTC	 DateTime	
value	

3.4.2.1.2 Hoarder	Routes	

Once	 the	OAI-PMH	Camel	 component	 has	 been	developed,	 it	 can	 be	 used	 from	a	 camel	 route	 to	
request	the	list	of	records	to	a	Data	Provider.	After	that,	we	need	to	understand	the	obtained	record	
to	handle	the	values	of	the	terms	and	download	the	related	resource/s.	As	mentioned	before,	it	has	
to	handle	term	ambiguity	and	multi-encoding	into	the	same	protocol	(RSS	or	OAI-PMH),	so	it	should	
be	adaptable	enough	for	each	DC	term	used.	Usually,	the	exchanged	information	is	encoded	as	XML,	
so	we	also	incorporated	XML	Path	Language	(XPATH)	here	to	adapt	the	expressions	to	read	the	term	
values	in	our	routes	to	handle	the	heterogeneity	showed	before.	In	future	cases	where	JSON	will	be	
the	encoding	used	by	servers,	we	will	use	JSONPATH	instead	of	XPATH	to	define	these	expressions.	

																																																													
36	http://camel.apache.org.	
37	https://github.com/cbadenes/camel-oaipmh	
38	http://www.openarchives.org/OAI/openarchivesprotocol.html#OAIPMHschema	
39	http://www.w3.org/TR/xpath/	



	 	 	

Page	25	of	77	
	

A	new	route	should	be	created	for	each	new	source	handled.	So,	we	designed	a	wrapper	for	Camel	
context	 using	 the	 Groovy	 language40	 ,	 to	 facilitate	 the	 way	 to	 create/modify	 OAI-PMH	 and	 RSS	
routes.	 It	allows	 route	definition	using	a	 Java	style,	 i.e.	using	 the	Camel	Domain	Specific	 Language	
(DSL)	 directly	 for	 creating	 EIP	or	 routes	 in	 a	 fluent	builder	 style.	 To	 reduce	 the	url	 definitions,	we	
included	the	following	namespaces	in	the	root	context:	

• oai:	”http://www.openarchives.org/OAI/2.0/”	

• dc:	”http://purl.org/dc/elements/1.1/”	

• provenance:	”http://www.openarchives.org/OAI/2.0/provenance”		

• oai	dc:	”http://www.openarchives.org/OAI/2.0/oai	dc”	

• rss:	”http://purl.org/rss/1.0/”	

	

Thus,	 a	 route	 for	 polling	 an	 OAI-PMH	 data	 provider,	 create	 a	 metadata	 file	 for	 each	 record	 and	
download	the	related	files	is:	

	

Figure	19.	OAI-PMH	route	for	the	UPM	repository.	

And	the	equivalent	for	a	RSS	repository:	

	

Figure	20.	RSS	route	for	the	Slashdot	site.	

In	both	cases,	some	common	subroutes,	i.e.	set	of	actions,	have	been	used	to	encapsulate	groups	of	
operations	 such	 as	 direct:setCommonOaipmhXpathExpressions,	
direct:setCommonRssXpathExpressions	and	direct:retrieveByHttpAndSave.	

A	route	defines	flows	of	works	starting	in	a	from	point	and	deriving	to	one	or	more	output	flows	(to).	
These	common	flows	define	common	actions	grouped	in	a	same	starting	point	(from).	

																																																													
40	http://www.groovy-lang.org/	



	 	 	

Page	26	of	77	
	

In	 such	 a	 way,	 direct:setCommonOaipmhXpathExpressions	 defines	 the	 set	 of	 expressions,	 usually	
XPATH	 expressions,	 to	 extract	 the	 values	 of	 the	 Dublin-Core	 terms	 from	 an	 OAI-PMH	 record	 as	
follows:	

	

Figure	21.	XPath	expressions	to	retrieve	OAI-PMH	values.	

	

In	a	similar	way,	the	RSS	data	provider	requires	a	common	direct:setCommonRssXpathExpressions	as	
follows:	

	

Figure	22.	XPath	expressions	to	retrieve	RSS	values.	

In	 addition,	 other	 common	 flows	 have	 been	 developed	 such	 as	 direct:avoidDeleted,	
direct:saveToFile,	 direct:downloadByHttp	 and	 direct:downloadByHttpAndSave	 to	 be	 reused	 from	



	 	 	

Page	27	of	77	
	

high-level	 routes	 such	 as	 direct:setCommonRssXpathExpressions	 or	
direct:setCommonOaipmhXpathExpressions.	

3.4.2.2 Routing-Keys	

This	module	is	listening	for	the	following	routing-keys:	

• source.{created | update | delete} 

This	module	does	not	publish	to	any	channel 

3.4.2.3 Use-Case	

Following	the	use-case	started	in	the	api	module,	an	event-message	will	be	received	by	the	hoarder	
module	with	 the	 uri	 of	 the	 new	 source.	 Then,	 it	will	 read	 the	 url	 of	 the	 source	 from	 the	 internal	
storage	 and	will	 compose	 a	 valid	OAI-PMH	 request	 for	 getting	 the	 list	 of	 resources	 in	 the	 specific	
time	interval.	

For	 each	 OAI	 record	 received,	 e.g.	oai:oa.upm.es:17,	 it	 will	 compose	 an	 XML	 file	 with	 that	
meta-information	and	will	check	if	contains	related	files.	For	each	related	file,	it	will	download	it	and	
both	data	(meta-information	and	related	files)	are	moved	to	the	shared	folder.	

	

Figure	23.	Hoarder	module	use-case. 

3.4.3 Harvester	
This	 module	 creates	 domain	 entities	 such	 as	 documents,	 items,	 parts	 and	 words,	 from	 both	
metadata	and	related	files	previously	downloaded	by	the	hoarder	module.	

Thus,	this	module	is	listening	for	published	events	in	the	event-bus	with	a	routing-key	that	matches	
with:	source.*.	



	 	 	

Page	28	of	77	
	

	

Figure	24.	Harvester	module.	

3.4.3.1 Workflow	

This	module	was	also	developed	using	Apache	Camel	to	define	the	harvesting	flows.	Now,	the	goal	is	
to	 build	 domain	 entities	 containing	 both	 meta-information	 and	 list	 of	 words	 extracted	 from	 the	
content	of	the	resource	or	resources.	The	NLP	service	 is	used	to	extract	the	text	from	the	pdf	files	
and	to	obtain	the	bag-of-words	from	a	resource	file.	After	that,	a	JSON	parser	(GSON)	is	required	to	
create	the	related	domain	entity	in	a	predefined	JSON	scheme.		

It	 consumes	 files	 from	a	 folder	where	 the	Hoarder	module	 drops	 them	directly,	 in	 real	 time.	 It	 is	
possible	using	 the	doneFileName41	 option	 included	 in	Camel	 that	extends	 the	 limited	 functionality	
defined	 in	 the	File	 IO	Api	of	 Java	 JDK.	Thus,	 in	a	continuous	 flow	of	work,	 the	Hoarder	downloads	
resources	and	meta-information	from	data	providers	to	a	shared	folder	where	the	Harvester	takes	
them	and	generates	documents,	items,	parts	and	words	from	them	to	be	processed	by	epnoi.	

All	 these	 resources	 (i.e.	documents,	parts,	words	and	parts)	will	be	stored	 in	 the	common	 internal	
storage	and	published	to	the	event-bus.	The	routing-key	will	include	the	processed	resource	and	the	
new	status	(	i.e.	created,	updated	or	deleted).	

3.4.3.2 Routing-Keys	

This	module	is	listening	for	the	following	routing-keys:	

• source.{created | updated | deleted} 

This	module	publishes	to	the	following	routing-keys:	

• document.{created | updated | deleted} 

• item.{created | updated | deleted} 

• part.{created | updated | deleted} 

• word.{created | deleted} 

 

																																																													
41	http://people.apache.org/~dkulp/camel/file2.html	



	 	 	

Page	29	of	77	
	

	

Figure	25.	Harvester	module	use-case.	

3.4.3.1 Use-Case	

Following	with	the	use-case	from	the	hoarder	module,	the	harvester	module	will	handle	every	new	
file	 copied	 to	 the	 shared	 folder.	 For	 each	 file,	 it	will	 read	 the	meta-information	 (if	 exists)	 and	 the	
related	files	(e.g.	pdf	paper)	to	retrieve	the	text	from	them.	

Then,	 it	will	 parse	 the	 text	using	 the	 internal	NLP	 service	 to	 identify	 the	 list	 of	words	 ,	 the	 logical	
parts	 and	 to	parse	 the	 text	 content	of	 the	 items	as	well	 as	 to	 compose	a	document	based	on	 the	
meta-information.	For	each	of	them,	it	will	be	stored	in	the	internal	storage	and	will	be	published	to	
the	 appropriate	 channel:	 document.<status>, item.<status>, part.<status>	 or	
word.<status>.	

At	this	point,	more	extra	information	could	be	even	added	to	items	or	to	the	document,	depending	
on	the	external	semantic	resources	used	such	as	WordNet42,	Wikidata43,	BabelNet44	or	any	other.		

3.4.4 Modeler	
This	 module	 considers	 the	 problem	 of	 modeling	 text	 corpora.	 The	 goal	 is	 to	 find	 short	
representations	of	 items,	based	on	their	parts,	preserving	the	essential	statistical	relationships	that	
are	useful	for	tasks	such	as	classification,	summarization	and	similarity	and	relevance	judgments.	

Popular	 algorithms	 reduce	 each	 resource	 in	 the	 corpus	 to	 a	 vector	 of	 real	 numbers	 taking	 into	
account	frequencies	of	words,	e.g.	The	tf-idf	scheme	takes	into	account	the	number	of	occurrences	
of	 each	 word	 compared	 to	 an	 inverse	 document	 frequency	 count	 measuring	 the	 number	 of	
occurrences	of	a	word	 in	 the	entire	corpus.	Though	they	present	some	appealing	 features	such	as	

																																																													
42	https://wordnet.princeton.edu	
43	https://www.wikidata.org	
44	http://babelnet.org/	



	 	 	

Page	30	of	77	
	

the	identification	of	discriminative	words,	they	are	unable	to	reveal	inter	or	intra	resource	statistical	
structure.	

Other	 approaches	 capture	most	 of	 the	 variance	 in	 the	 collection	 and	 even	 some	 aspects	 of	 basic	
linguistic	 notions,	 e.g.	 synonymy	 and	 polysemy,	 such	 as	 Latent	 Semantic	 Analysis	 (LSA)	 or	 Latent	
Semantic	Indexing	(LSI)[4]	but	they	cannot	express	more	complex	relationships	between	documents,	
between	words	 and	 between	 documents	 and	words.	 Since	 they	 are	 discriminative	 models,	 they	
provide	 a	 model	 only	 for	 the	 target	 variable,	 documents,	 conditional	 on	 the	 observed	 variables,	
words,	ignoring	hidden	structures	such	as	topics.	

Thus,	 to	describe	 these	hidden	structures,	 i.e.	 these	complex	 relationships,	not	only	a	 topic	model	
algorithm	is	required,	but	also	a	generative	topic	model	algorithm	such	as	Latent	Dirichlet	Allocation	
(LDA)[5].	 This	 will	 enable	 us	 to	 organize	 and	 summarize	 documents	 at	 scale,	 what	 would	 be	
impossible	by	any	other	manner,	preserving	the	essential	statistical	relationships	that	are	useful	for	
the	aforementioned	tasks.	More	details	about	the	algorithm	used	by	this	module	in	Appendix	3.	

3.4.4.1 Workflow	

In	this	first	version	of	the	system,	this	module	can	build	two	types	of	models:	

• A	topic-model,	using	the	Latent	Dirichlet	Allocation	(LDA)	algorithm,	for	each	domain.	So,	a	
domain	will	be	represented	by	a	set	of	topics,	 i.e.	ranked	list	of	words,	and	the	documents,	
items	and	parts	from	that	domain	will	be	represented	by	a	vector	of	probabilities	to	belong	
to	these	topics.	

• A	distributed	representational	model,	using	the	Word2Vec	(W2V)	[9]	method,	for	each	word	
in	every	domain.	

	

As	previously	mentioned,	an	LDA	model	is	used	to	describe	the	inherent	topic	distribution	of	existing	
documents.	 This	 model	 requires	 some	 parameters	 to	 be	 built,	 and	 they	 need	 to	 be	 adjusted	 to	
obtain	a	high	quality	model.		

In	 addition,	 all	 parameters	 are	 domain-level	 parameters,	 so	 we	 need	 to	 calculate	 new	 values	
whenever	 the	domain	 changes.	 From	 the	point	of	 view	of	efficiency,	 this	operation	 is	executed	 in	
background	mode	 each	 time	 a	 group	 of	 documents	 are	 added.	 The	 size	 of	 that	 group	 is	 defined	
beforehand.	



	 	 	

Page	31	of	77	
	

	

Figure	26.	Modeler	module.	

	

3.4.4.2 Routing-Keys	

This	module	is	listening	for	the	following	routing-keys:	

• domain.{created | updated | deleted} 

This	module	publishes	to	the	following	routing-keys:	

• topic.{created | updated} 

• relation.{created | updated} 

• analysis.created 

 

3.4.4.3 Use-Case	

Once	an	event-message	has	been	received	from	the	event-bus	in	the	channel	domain.created,	
this	module	will	 read	all	 the	documents	 (and/or	 items,	and/or	parts	 inside	 it).	Then,	 it	will	 start	 to	
build	representational	models	for	that	domain.	For	each	new	topic	or	relation	discovered,	an	event-
message	 will	 be	 published	 in	 the	 corresponding	 channel:	 topic.created	 or	
relation.created with	 the	 uri	 of	 the	 resource.	 When	 the	 analysis	 is	 done,	 a	 new	 event-
message	is	sent	to:	analysis.created	to	indicate	that	the	new	models	have	been	created	and	
stored	in	the	internal	storage	along	with	the	analysis.	



	 	 	

Page	32	of	77	
	

	

Figure	27.	Modeler	module	use-case.	

3.4.5 Comparator	
This	 module	 use	 the	 models	 created	 by	 the	Modeler	module	 during	 an	 analysis	 to	 calculate	 the	
analogies	among	resources	such	as	documents,	items,	parts	and/or	words.	

As	 stated	 previously,	 the	 system	 will	 discover	 analogies	 based	 on	 information	 derived	 from	 the	
documents,	 items	and/or	parts.	For	this,	some	metrics	are	required,	mainly	similarity	measures,	 to	
connect	 them	 and	 extract	 knowledge	 from	 these	 relationships.	 More	 details	 about	 the	 similarity	
measure	used	by	this	module	in	Appendix	3.	

3.4.5.1 Routing-Keys	

When	a	domain	is	analyzed,	it	implies	that	new	models	are	built	for	each	representational	level,	i.e.	
domain,	document,	 item,	part	and	word.	 Thus,	 this	module	will	 use	 these	models	 to	measure	 the	
similarity	 value	 among	 resources	 at	 the	 same	 representational	 level	 and	will	 update	 them	 linking	
those	with	 a	 similar	 value	 higher	 than	 a	 threshold.	 So,	 networks	 of	 similar	 resources	 are	 built	 for	
each	domain.	

	

Figure	28.	Comparator	module.	



	 	 	

Page	33	of	77	
	

This	module	is	listening	for	the	following	routing-keys:	

• analysis.created 

This	module	publishes	to	the	following	routing-keys:	

• domain.updated 

• document.updated 

• item.updated 

• part.updated 

• word.updated 

3.4.5.2 Use-Case	

When	a	new	event-message	 is	 published	 in	 the	analysis.created channel,	 this	module	will	
read	the	built	model	for	each	resource	in	that	domain	(	i.e.	document,	item,	part	and	word)	and	will	
use	it	to	calculate	the	similarity	measure	among	them.	

Once	the	measure	is	obtained	for	each	resource,	it	will	update	it	and	will	publish	an	event-message	
in	 the	 appropriate	 channel,	 i.e.	document.updated,	 or	item.updated,	 or	part.updated 
or	word.updated.	

	

Figure	29.	Comparator	module	use-case.	

3.4.6 Learner	
This	module	 discovers	 terms	 and	 hypernym	 relations	 from	 the	 documents	 of	 a	 domain.	 It	mainly	
interacts	 with	 two	 services,	 the	Natural	 Language	 Processing	 (NLP)	 service	 to	 perform	 the	 extra	
annotation	tasks	not	previously	executed	by	the	harvester	module	(e.g.	dependency	parsing)	and	the	
Knowledge-Base	(KB)	service,	which	contains	one	or	more	knowledge	bases.	



	 	 	

Page	34	of	77	
	

	

Figure	30.	Learner	module.	

	

3.4.6.1 Routing-Keys	

This	module	is	listening	for	the	following	routing-keys:	

• analysis.created 

This	module	publishes	to	the	following	routing-keys:	

• relation.{created | updated } 

• word.{created | updated} 

 

3.4.6.2 Use-Case	

When	a	new	notification	has	been	received	in	the	analysis.created channel,	this	module	will	
read	all	the	items	in	that	domain	to	discover	terms	and	relations.	For	each	new	entity	recognized,	it	
will	 publish	 a	 new	 event-message	 to	 the	 word.updated	 or	 to	 the	 word.created	 channel,	
depending	on	whether	they	are	an	existing	word	or	a	composition	of	words.	

	

	

Figure	31.	Learner	module	use-case.	



	 	 	

Page	35	of	77	
	

After	that,	it	will	gather	all	the	relevant	information	about	the	text	using	the	NLP	and	the	KB	service	
to	 conclude	 which	 type	 of	 relation	 exists,	 or	 not,	 between	 two	 terms.	 For	 each	 new	 relation	
discovered,	a	new	event-message	to	relation.created	or	relation.updated channel	will	
be	published.	

3.5 Services	
As	previously	shown	in	modules	section,	the	system	has	been	designed	following	the	basic	principles	
of	 the	Microservices	Architecture	 [27].	 The	main	purpose	here	 is	not	only	 to	have	multiple	public	
services,	but	also	to	allow	building	a	scalable	system	in	a	scalable	way.	

	

	
Figure	32.	Types	of	service.	

From	 the	 scalable	 way	 point	 of	 view,	 modules	 and	 services	 are	 developed	 and	 deployed	
independently	of	one	another.	Each	of	them	has	its	own	life-cycle	and	may	be	running	in	an	isolated	
environment.	

From	the	scalable	system	point	of	view,	the	architecture	is	designed	applying	the	Scale	Cube	model.	
It	enables	the	x-axis	scaling,	i.e.	running	multiple	copies	of	a	module	or	a	service,	the	y-axis	scaling,	
i.e.	decomposing	 the	system	 into	modules	and	service,	and	the	z-axis	 scaling,	 i.e.	 running	multiple	
instances	of	a	global	installation	with	different	corpus	each	of	them.	

	

3.5.1 Natural	Language	Processing	(NLP)	
Some	Natural	Language	Processing	(NLP)	tasks	have	been	externalized	as	a	service	to	reuse	common	
functionalities	 and	 optimize	 the	 use	 of	 resources.	 It	 takes	 existing	 NLP	 libraries	 such	 as	 Gate45,	
CoreNLP46	and	the	Text	Mining	Framework47.	

																																																													
45	https://gate.ac.uk/	
46	http://stanfordnlp.github.io/CoreNLP/	
47	http://backingdata.org/dri/library/	



	 	 	

Page	36	of	77	
	

	

Figure	33.	NLP	service	interfaces.	

In	short,	it	offers	the	possibility	of	performing	the	following	NLP	tasks	in	a	textual	document:	

• tokenization:	Splits	a	stream	of	text	into	tokens,	i.e.	words	and	symbols.	

• sentence	splitting:	Group	a	sequence	of	tokens	into	sentences.	

• lemmatization:	Generates	the	word	lemmas	for	all	tokens	(i.e.	their	cannonical	form).	

• stemming:	Reduces	the	token	to	the	morphological	root	of	the	word.	

• part-of-speech:	Labels	tokens	with	their	POS	tag	based	on	both	its	definition	and	its	context.	

• entity	 recognition:	 Identifies	 entities	 such	 as	 Person,	 Organization,	 Location,	 Time	 and	
Numerical	expressions.	

• Dependency	 parsing:	 Identifies	 the	 syntactic	 relationship	 that	 might	 exist	 between	
individual	terms	within	the	context	of	a	sentence.	

Currently,	 it	 is	 implemented	 as	 both	 an	 internal	 resource	 and	 an	 external	 resource	 having	 two	
interfaces:	a	WS-REST	for	public	clients	and	a	Thrift48-based	for	internal	clients.	

3.5.2 Knowledge-Base	
The	 knowledge	base	provides	 and	 facilitates	 a	 read-only	 and	mostly	 domain	 independent	 curated	
set	of	facts	that	can	be	considered	as	the	ground	truth	for	other	modules	such	as	the	Leaner	and	the	
Modeler.	Currently	it	uses	two	well-known	knowledge	resources:	 	

• WordNet.	 WordNet	 [28]	 is	 a	 large	 lexical	 database	 of	 English.	 Though	 we	 are	 mainly	
interested	 in	 nouns,	 WordNet	 also	 contains	 information	 about	 verbs,	 adjectives	 and	
adverbs.	All	these	elements	are	grouped	into	synsets,	each	expressing	a	distinct	concept	(i.e.	
entities	are	grouped	if	they	share	the	same	meaning).	Synsets	are	also	related	between	the	
semantic	 and	 lexical	 relations.	 In	 order	 to	 access	 WordNet	 we	 use	 JWI	 (the	 MIT	 Java	
WordNet	 Interface)[29],	 a	 library	 that	 supports	 fast	 and	 compact	 in-memory	 access	 to	
WordNet	versions	1.6	through	3.0,	among	other	related	WordNet	extensions.	

																																																													
48	https://thrift.apache.org/	



	 	 	

Page	37	of	77	
	

• Wikidata.	Wikidata	 is	a	 free	 linked	database	 that	 can	be	 read	and	edited	both	by	humans	
and	machines.	 Its	endeavour	 is	 to	become	a	central	 storage	 for	 the	structured	data	of	 the	
Wikimedia	ecosystem	(including	Wikipedia).	We	rely	 in	the	Wikidata	Toolkit49	 to	parse	and	
handle	 the	huge	Wikidata	dumps,	and	we	create	what	we	refer	as	a	Wikidata	view,	which	
contains	only	the	relations	that	we	are	interested	in	for	the	shake	of	efficiency.	Currently	the	
KB	service	provides	two	different	Wikidata	views,	namely:		

o In	memory	view.	All	the	entities	and	relations	of	interest	contained	in	the	Wikidata	
dump	are	loaded	to	in-memory	data	structures	optimized	for	fast	access.				

o Unified	 data	 manager	 view.	 Since	 the	 in	 memory	 view	 option	 is	 quite	 memory	
demanding,	 the	 KB	 service	 provides	 also	 the	 possibility	 of	 using	 a	 version	 of	 the	
Wikidata	 view	 stored	 in	 a	 column-oriented	 database	 inside	 the	 Unified	 Data	
Manager.	A	small	 latency	is	 introduced,	but	the	hardware	requirements	are	greatly	
reduced.	

As	 in	 the	 case	of	 the	NLP	 service,	 the	KB	 service	 is	 deployed	as	both	an	 internal	 resource	 and	an	
external	 resource	 having	 two	 interfaces:	 a	 WS-REST	 for	 public	 clients	 and	 a	 Thrift-based	 one	
targeted	 at	 local	 clients	 where	 efficiency	 is	 a	 must	 and	 no	 firewalls	 may	 block	 the	 message	
interchange.	

3.5.3 Storage	
Multiples	 types	of	 data	 are	handled	 in	 this	 system.	 Sometimes,	 it	 should	be	 stored	 in	 a	 key-value	
form,	at	other	times	it	should	be	stored	in	a	column-oriented	form.	In	any	case,	the	system	must	be	
flexible	enough	to	handle	as	different	databases	as	data	types	it	handles.	

	

Figure	34.	Unified	Data	Manager.	

Inspired	 in	the	Data	Access	Object	 (DAO)	pattern,	we	created	a	Unified	Data	Manager	 (UDM)	that	
implements	 the	 four	 basic	 functions	 of	 a	 persistent	 storage,	 i.e.	Create,	Read,	Update	 and	Delete	
(CRUD),	 for	any	 type	of	data	along	with	more	complex	 functions	 combining	 some	of	 them.	 In	 this	
way,	all	the	particularities	of	data	storage	services	are	only	handled	from	here	and	any	other	module	
has	a	centralized	access	for	persistent	operations.	

The	overall	 flow	is	parallelized	by	modules,	and	the	storage	operations	are	centralized	within	each	
module	by	the	UDM.	

																																																													
49	https://www.mediawiki.org/wiki/Wikidata_Toolkit	



	 	 	

Page	38	of	77	
	

Currently,	the	following	databases	are	handled	in	the	system:	

• column-oriented	database:	Focused	on	unique	and/or	structured	data.	This	allows	searching	
key	elements	in	resources.	We	use	Apache	Cassandra	to	support	this	functionality	because	
of	its	linear	scalability	and	performance.	

• document-oriented	 database:	 Focused	 on	 raw	 data.	 This	 allows	 retrieving	 all	 the	
information	gathered	about	a	resource.	We	are	currently	working	with	Apache	Solr50	as	text	
search	 and	 analytic	 engine	 but,	 taking	 into	 account	 scability	 features,	 we	 are	moving	 our	
designs	 to	Elasticsearch51	 to	 allow	epnoi	 to	 be	deployed	 in	 cluster.	 It	 is	 also	 a	wrapper	 to	
Lucene	 with	 an	 inbuilt	 document	 database	 but	 providing	 scaling	 solutions.		
The	 schema	 created	 in	 Elasticsearch	 considers	 only	 one	 index	 (‘research’)	 and	 as	 type-
definitions	 as	 resource-types	 (	 ‘documents’,	 ‘items’,	 ‘parts’,	 ‘words’,’topics’,’relations’,	
‘source’	 and	 ‘domains’).	 In	 this	 way,	 the	 system	 will	 index	 all	 resources	 when	 they	 are	
created.	

• graph	 database:	 Focused	 on	 relationships.	 This	 allows	 exploring	 resources	 through	 the	
relationships	 between	 them.	We	 are	 using	OpenLink	Virtuoso52	 as	 our	 RDF	 Triple	 store	 to	
evaluate	 SPARQL	 queries	 over	 resources	 such	 as	 documents,	 domains,	 topics	 and	 so	 on.	
	
Besides	 oriented	 to	 explore	 the	 relationships	 (i.e	 the	 analogies	 among	 resources)	 we	 are	
using	 Neo4j53	 as	 our	 graph	 database	 to	 allow	 users	 to	 explore	 the	 resources	 using	 graph	
algorithms.	
	

	

Figure	35.	Storage	system.	

	
	

																																																													
50	http://lucene.apache.org/solr/	
51	https://www.elastic.co/	
52	http://virtuoso.openlinksw.com/	
53	http://neo4j.com/	



	 	 	

Page	39	of	77	
	

4 Application	Programming	Interface	(API)	

The	 system	provides	 programmatic	 access	 to	 the	 repository	 content.	 Deployed	 version	 of	 the	API	
provides	 a	 set	 of	 functionalities	 to	 manage	 and	 to	 explore	 resources.	 It	 allows	 adding	 sources,	
grouping	documents	in	domains,	searching	topics,	explore	relations	and	so	on.	

The	API	follows	WS-REST	principles	and	the	return	format	used	for	all	the	endpoints	is	JSON.	

Some	 details	 about	 resources	 and	 operations	 are	 presented	 below	 and	 described	 in	 detail	 in	
Appendix	4.	

4.1 Reading	Queries	
Detailed	 information	 about	 resources	 can	 be	 obtained	 using	 the	 API	 endpoints	 (	 more	 details	 in	
Appendix	 4).	 This	 type	 of	 queries	 are	 considered	 as	 reading	 queries	 such	 as	 reading	 details	 of	 a	
resource.	

4.1.1 Read	details	of	a	Domain	
Request:		

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/domains/<domain-id> 

Request-Example:		

curl -i -X GET http://drinventor.dia.fi.upm.es/api/0.2/domains/default 

Response-Example:	

{ 

    "uri": "http://drinventor.eu/domains/default", 

    "creationTime": "2016-10-11T11:24+0000", 

    "description": "attached to source: http://drinventor.eu/sources/default", 

    "name": "default 

} 

4.1.2 Read	details	of	a	Document	
Request:		

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/documents/<document-id> 

Request-Example:		

curl -i -X GET 
http://drinventor.dia.fi.upm.es/api/0.2/documents/010950f6_4b98_4f32_a1c6_6ccb8c328
6f4 

Response-Example:	



	 	 	

Page	40	of	77	
	

{ 

  "uri": "http://drinventor.eu/documents/010950f6_4b98_4f32_a1c6_6ccb8c3286f4", 

  "creationTime": "2016-10-11T13:30+0200", 

  "publishedOn": "2012", 

  "publishedBy": "siggraph", 

  "authoredOn": "2012", 

  "authoredBy": "Bruno Galerne, Ares Lagae, Sylvain Lefebvre, George Drettakis", 

  "retrievedFrom": "http://drinventor.ccgv.org.uk/db-
siggraph/010950f6_4b98_4f32_a1c6_6ccb8c3286f4/Full.pdf", 

  "retrievedOn": "2016-10-11T13:30+0200", 

  "format": "pdf", 

  "language": "en", 

  "title": "Gabor noise by example" 

} 

 

4.1.3 Read	details	of	a	Topic	
Request:		

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/topics/<topic-id> 

Request-Example:		

curl -i -X GET 
http://drinventor.dia.fi.upm.es/api/0.2/topics/5249ce5686b47dd5de4dfb9e18e70e39 

Response-Example:	

{ 

  "uri" : "http://drinventor.eu/topics/5249ce5686b47dd5de4dfb9e18e70e39", 

  "creationTime" : "2016-10-11T12:06+0000", 

  "content" : "theme,color,image,user,model,rating,figure,face,object,template" 

} 

4.1.4 List	Documents	in	a	Domain	
Request:		

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/domains/<domain-
id>/documents 

Request-Example:		

curl -i -X GET http://drinventor.dia.fi.upm.es/api/0.2/domains/default/documents 



	 	 	

Page	41	of	77	
	

Response-Example:	

[  
   "http://drinventor.eu/documents/fffcf676_6bd0_4587_8ab4_2ec344a36dc4",       
   "http://drinventor.eu/documents/fff58b8d_15f0_4dd6_90b1_7bdba2872141",  
   "http://drinventor.eu/documents/ffe44439_a998_4ddd_b30f_6e3a652ebe90", 
   .. 
] 

4.2 Searching	Queries	
Along	with	the	previous	reading	queries,	more	complex	queries	based	on	the	textual	content	of	the	
resources	are	needed.		

For	this	reason,	the	system	also	provides	an	endpoint	to	make	these	type	of	queries:		

filters/<id>/matches	

This	 service	 is	 based	 on	 the	 document-oriented	 storage	 (Section	 “Storage),	 so	 it	 allows	 users	 to	
search	documents,	items	and	parts	indexed	in	Elasticsearch	based	on	their	content.	

4.2.1.1 Create	a	Filter	

Request:	 	

HTTP-POST http://drinventor.dia.fi.upm.es/api/0.2/filters 

Request-Example:	 	

curl -i -H "Content-Type: application/json" -X POST -d '{"content":"Gabor noise by 
example"}' http://drinventor.dia.fi.upm.es/api/0.2/filters 

Response-Example:	

{ 

  "uri" : "http://drinventor.eu/filters/21e5d61115cd59b9062b2516a73c588b", 

  "creationTime" : "2017-02-28T10:05+0000", 

  "content" : "Gabor noise by example" 

} 

4.2.1.2 List	matched	Items	

Request:	 	

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/filters/<filter-id>/items 

Request-Example:	 	

curl -i -X GET 
http://drinventor.dia.fi.upm.es:80/api/0.2/filters/21e5d61115cd59b9062b2516a73c588b/matches/it
ems  

Response-Example:	

[ { 



	 	 	

Page	42	of	77	
	

  "weight" : 0.44048798084259033, 

  "resource" : "http://drinventor.eu/items/89c38eb9ea20a2828aebc67ce2b9e7d6", 

  "description" : "ACM Reference Format\nGalerne, B., Lagae, A., Lefebvre, S., 
Drettakis, G. 2012. Gabor Noise by Exampl.." 

} ] 

4.3 Explorative	Queries	
Along	with	the	previous	reading	and	searching	queries,	more	complex	queries	based	on	the	
relationships	among	the	resources	are	needed.	They	are	oriented	to	iterate	over	the	network	of	
resources	connected	by	analogies	between	them.	

4.3.1 From	an	existing	resource	
The	system	provides	an	endpoint	to	get	the	list	of	similar	resources	for	each	resource	type	(i.e	
documents,	items	and	parts):	

documents/<id>/documents	

items/<id>/items	

parts/<id>/parts	

4.3.1.1 Sorted	List	of	similar	Items	

Request:	 	

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/items/<item-id>/items 

Request-Example:	 	

curl -i -X GET 
http://drinventor.dia.fi.upm.es/api/0.2/items/c6632036e43a12a63e52c56830d9a292/items  

Response-Example:	

[ 

  "http://drinventor.eu/items/6e9cd55a3f6259d141536cc276023235", 

  "http://drinventor.eu/items/3d369b1cc69f0e0449dcf5126238f74", 

  "http://drinventor.eu/items/63b730658ccf01bb0576c78ba42f2ec8", 

  "http://drinventor.eu/items/40cc66e646ca419856099730544557c2", 
… 
] 

4.3.1.2 Similarity	score	between	two	Items	

Request:	 	

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/items/<item-id>/items 

Request-Example:	 	



	 	 	

Page	43	of	77	
	

curl -i -X GET 
http://drinventor.dia.fi.upm.es/api/0.2/items/c6632036e43a12a63e52c56830d9a292/items/6e9cd55a3
f6259d141536cc276023235  

Response-Example:	

{ 

  "uri" : "http://drinventor.eu/items/c7bf8d0dc3ef40f2bfe371c12814e839", 

  "creationTime" : "2016-10-11T12:29+0000", 

  "weight" : 0.1273334759947482 

} 

	

	

4.3.2 From	free-text	
Moreover,	the	system	also	provides	an	endpoint	to	make	these	type	of	queries	from	free-text:		

filters/<id>/similar	

This	service	is	based	on	the	graph-oriented	storage	(Section	“Storage),	so	it	allows	users	to	search	
resources	iterating	on	the	graph	stored	in	Neo4j.	

4.3.2.1 Create	a	Filter	

Request:	 	

HTTP-POST http://drinventor.dia.fi.upm.es/api/0.2/filters 

Request-Example:	 	

curl -i -H "Content-Type: application/json" -X POST -d '{"content":"A large form of 
digital art, pixel art is created through the use of raster graphics software, where images 
are edited on the pixel level. Graphics in most old (or relatively limited) computer and video 
games, graphing calculator games, and many mobile phone games are mostly pixel art"}' 
http://drinventor.dia.fi.upm.es/api/0.2/filters 

Response-Example:	

{ 

  "uri" : "http://drinventor.eu/filters/827e564428b2589dd1ad31fd5deb85ba", 

  "creationTime" : "2017-02-28T10:18+0000", 

  "content" : "A large form of digital art, pixel art is created through the use of 
raster graphics software, where images are edited on the pixel level. Graphics in most 
old (or relatively limited) computer and video games, graphing calculator games, and 
many mobile phone games are mostly pixel art" 

} 



	 	 	

Page	44	of	77	
	

4.3.2.2 List	similar	Items	from	a	Filter	

Request:	 	

HTTP-GET http://drinventor.dia.fi.upm.es/api/0.2/filters/<filter-id>/items 

Request-Example:	 	

curl -i -X GET 
http://drinventor.dia.fi.upm.es/api/0.2/filters/827e564428b2589dd1ad31fd5deb85ba/similar/items  

Response-Example:	

[ { 

  "weight" : 0.6446552491964215, 

  "resource" : "http://drinventor.eu/documents/d36a1c64_30bf_47f8_8732_129e3dc51b10", 

  "description" : "Interactive local adjustment of tonal values" 

}, { 

  "weight" : 0.6441199305756808, 

  "resource" : "http://drinventor.eu/documents/b32b2cb9_f759_4838_927f_0c4951553339", 

  "description" : "Edge-preserving decompositions for multi-scale tone and detail 
manipulation" 

}, { 

  "weight" : 0.6415959629944215, 

  "resource" : "http://drinventor.eu/documents/ed7b785b_3731_423c_879f_8ee136b9be3c", 

  "description" : "Color2Gray" 

}, 
… 
] 

	



	 	 	

Page	45	of	77	
	

5 Installation	

The	system	described	in	this	deliverable	could	be	used	as	an	online	service	or	as	a	local	instance.		

5.1 Online	Service	
The	 best	 way	 to	 benefit	 from	 all	 the	 improvements	 acquired	 by	 means	 of	 multiple	 and	
heterogeneous	corpus	added	to	the	system	by	other	users	is	by	using	the	(Swagger)	REST-API	online	
service	at:	

http://drinventor.dia.fi.upm.es/api 

As	 it	 includes	machine	 learning	 functions,	 the	 greater	 the	 corpus	 database	 is,	more	 accurate	 the	
results	will	be.	

5.2 Local	Instance	
There	 is	 also	 a	 binary	 distribution	 of	 the	 system	 that	 can	 be	 installed	 and	 run.	 To	 facilitate	 the	
installation	 of	 the	 system,	 it	 has	 been	 packaged	 as	 Docker54	 containers	 and	 uploaded	 to	 Docker-
Hub55.		

The	following	images	compose	the	system:	

librairy/document-db:1.0 
librairy/column-db:1.3 
librairy/graph-db:1.2 
librairy/event-bus:1.0 
librairy/explorer:0.21.1 
librairy/harvester-research:0.11 
librairy/modeler-lda:0.11 
librairy/modeler-w2v:0.11  
librairy/comparator-jsd:0.2 
librairy/comparator-cos:0.2 
librairy/ftp:1.0 

5.2.1 Minimum	Recommended	Requirements	
Hardware	Requirements	

- CPU	Processor:		four	to	twelve	64-bit	multicore	processors.	

- RAM:	64GB	or	more.	

- HDD:	at	least	500GB	of	free	space.	

Software	Requirements	

- OS:	Linux,	Cloud,	Windows	and	OS	X.		

- Docker:	1.4.1	or	newer.		 	

																																																													
54	https://www.docker.com/	
55	https://hub.docker.com/	



	 	 	

Page	46	of	77	
	

6 References	

[1]	 M.	Welsh,	“The	staged	event-driven	architecture	for	highly-concurrent	server	applications”,	
Univ.	California,	Berkeley,	2000.	

[2]	 Y.	Petinot,	C.	L.	Giles,	V.	Bhatnagar,	P.	B.	Teregowda,	H.	Han,	and	I.	Councill,	“CiteSeer-API”,	
Proc.	Thirteen.	ACM	Conf.	Inf.	Knowl.	Manag.	-	CIKM	’04,	p.	553,	2004.	

[3]	 R.	Wu	and	D.	G.	Down,	“Round	robin	scheduling	of	heterogeneous	parallel	servers	in	heavy	
traffic”,	Eur.	J.	Oper.	Res.,	vol.	195,	no.	2,	pp.	372–380,	2009.	

[4]	 S.	Deerwester,	S.	T.	Dumais,	G.	W.	Furnas,	T.	K.	Landauer,	and	R.	Harshman,	“Indexing	by	
Latent	Semantic	Analysis”,	J.	Am.	Soc.	Inf.	Sci.,	vol.	41,	pp.	391–407,	1990.	

[5]	 D.	M.	Blei,	A.	Y.	Ng,	and	M.	I.	Jordan,	“Latent	Dirichlet	Allocation”,	J.	Mach.	Learn.	Res.,	vol.	3,	
no.	4–5,	pp.	993–1022,	2003.	

[6]	 M.	Steyvers,	G.	Ths,	and	T,	“Probabilistic	topic	models”,	Landauer,	T.,	McNamara,	D.,	Dennis,	
S.,	Kintsch,	W.,	Ed.	Latent	Semant.	Anal.	A	Road	to	Meaning.	Laurence	Erlbaum.	Tang,	Z.	
MacLennan,	J,	2006.	

[7]	 T.	Hofmann,	“Unsupervised	Learning	by	Probabilistic	Latent	Semantic	Analysis”,	Mach.	Learn.,	
vol.	42,	no.	1–2,	pp.	177–196,	2001.	

[8]	 A.	Asuncion,	M.	Welling,	P.	Smyth,	and	Y.	W.	Teh,	“On	Smoothing	and	Inference	for	Topic	
Models”,	in	Proceedings	of	the	Twenty-Fifth	Conference	on	Uncertainty	in	Artificial	
Intelligence,	2009,	pp.	27–34.	

[9]	 T.	Mikolov,	G.	Corrado,	K.	Chen,	and	J.	Dean,	“Efficient	Estimation	of	Word	Representations	in	
Vector	Space”,	Proc.	Int.	Conf.	Learn.	Represent.	(ICLR	2013),	pp.	1–12,	2013.	

[10]	 A.	Zhou,	B.-Y.	Qu,	H.	Li,	S.-Z.	Zhao,	P.	N.	Suganthan,	and	Q.	Zhang,	“Multiobjective	
evolutionary	algorithms:	A	survey	of	the	state	of	the	art”,	Swarm	Evol.	Comput.,	vol.	1,	no.	1,	
pp.	32–49,	2011.	

[11]	 K.	Deb	and	H.	Jain,	“An	Evolutionary	Many-Objective	Optimization	Algorithm	Using	
Reference-point	Based	Non-dominated	Sorting	Approach,	Part	I:	Solving	Problems	with	Box	
Constraints”,	Ieeexplore.Ieee.Org,	vol.	18,	no.	c,	pp.	1–1,	2013.	

[12]	 K.	Deb	and	R.	B.	Agrawal,	“Simulated	Binary	Crossover	for	Continuous	Search	Space”,	
Complex	Syst.,	vol.	9,	pp.	1–34,	1994.	

[13]	 K.	Liagkouras	and	K.	Metaxiotis,	“An	Elitist	Polynomial	Mutation	Operator	for	improved	
performance	of	MOEAs	in	Computer	Networks”,	Comput.	Commun.	Networks	(ICCCN),	2013	
22nd	Int.	Conf.,	pp.	1–5,	2013.	

[14]	 K.	Deb	and	M.	Goyal,	“A	Combined	Genetic	Adaptive	Search	(GeneAS)	for	Engineering	
Design”,	Comput.	Sci.	Informatics,	vol.	26,	no.	1,	pp.	30–45,	1996.	

[15]	 K.	Deb	and	S.	Tiwari,	“Omni-optimizer:	A	generic	evolutionary	algorithm	for	single	and	multi-
objective	optimization”,	Eur.	J.	Oper.	Res.,	vol.	185,	no.	3,	pp.	1062–1087,	2008.	

[16]	 V.	Rus,	N.	Niraula,	and	R.	Banjade,	“Similarity	Measures	Based	on	Latent	Dirichlet	Allocation”,	



	 	 	

Page	47	of	77	
	

in	Computational	Linguistics	and	Intelligent	Text	Processing,	Springer	US,	2013,	pp.	459–470.	

[17]	 	a	Celikyilmaz,	D.	Hakkani-Tur,	and	G.	Tur,	“LDA	Based	Similarity	Modeling	for	Question	
Answering”,	in	Proceedings	of	the	NAACL	HLT	2010	Workshop	on	Semantic	Search,	2010,	pp.	
1–9.	

[18]	 I.	Dagan,	L.	Lee,	and	F.	C.	N.	Pereira,	“Similarity-Based	Models	of	Word	Cooccurrence	
Probabilities”,	Mach.	Learn.,	vol.	34,	no.	1–3,	pp.	43–69,	1999.	

[19]	 R.	Ranjan	and	T.	Gneiting,	“Combining	probability	forecasts”,	Int.	J.	Forecast.,	vol.	27,	no.	2,	
pp.	208–223,	2008.	

[20]	 D.	Allard,		a.	Comunian,	and	P.	Renard,	“Probability	Aggregation	Methods	in	Geoscience”,	
Math.	Geosci.,	vol.	44,	no.	5,	pp.	545–581,	2012.	

[21]	 V.	a.	Satopää,	J.	Baron,	D.	P.	Foster,	B.	a.	Mellers,	P.	E.	Tetlock,	and	L.	H.	Ungar,	“Combining	
multiple	probability	predictions	using	a	simple	logit	model”,	Int.	J.	Forecast.,	vol.	30,	no.	2,	pp.	
344–356,	2014.	

[22]	 K.	T.	Frantzi,	S.	Ananiadou,	and	J.	Tsujii,	“The	C-value	/	NC-value	Method	of	Automatic	
Recognition	for	Multi-word	Terms”,	Res.	Adv.	Technol.	Digit.	Libr.,	pp.	585–604,	1998.	

[23]	 F.	Sclano	and	P.	Velardi,	“Termextractor:	a	web	application	to	learn	the	shared	terminology	of	
emergent	web	communities”,	in	Proceedings	of	the	3th	International	Conference	on	
Interoperability	for	Enterprise	Software	and	Applications	(I-ESA),	2007,	pp.	287–290.	

[24]	 M.	Mintz,	S.	Bills,	R.	Snow,	and	D.	Jurafsky,	“Distant	supervision	for	relation	extraction	
without	labeled	data”,	Proc.	47th	Annu.	Meet.	ACL	4th	IJCNLP	AFNLP,	no.	August,	pp.	1003–
1011,	2009.	

[25]	 R.	Snow,	D.	Jurafsky,	and	A.	Y.	Ng,	“Learning	syntactic	patterns	for	automatic	hypernym	
discovery”,	Adv.	Neural	Inf.	Process.	Syst.	17,	vol.	17,	pp.	1297–1304,	2004.	

[26]	 R.	C.	Bunescu	and	R.	J.	Mooney,	“A	shortest	path	dependency	kernel	for	relation	extraction”,	
Proc.	Hum.	Lang.	Technol.	Conf.	Conf.	Empir.	Methods	Nat.	Lang.	Process.,	no.	October,	pp.	
724–731,	2005.	

[27]	 B.	Costa,	P.	F.	Pires,	F.	C.	Delicato,	and	P.	Merson,	“Evaluating	REST	Architectures	-	Approach,	
Tooling	and	Guidelines”,	J.	Syst.	Softw.,	vol.	112,	pp.	156–180,	2015.	

[28]	 C.	Fellbaum,	“WordNet	and	wordnets”,	in	Encyclopedia	of	Language	&	Linguistics,	vol.	13,	
2005,	pp.	665–670.	

[29]	 M.	A.	Finlayson,	“Java	Libraries	for	Accessing	the	PrincetonWordnet:	Comparison	and	
Evaluation”,	in	Proceedings	of	the	7th	International	Global	WordNet	Conference	(GWC	2014),	
2014,	pp.	78–85.	

	

	 	



	 	 	

Page	48	of	77	
	

Appendix	1	–	Abbreviations	and	acronyms	

	

DCMI	 Dublin	Core	Metadata	Innovation	

JSD	 Jensen	Shannon	Divergence	

LDA	 Latent	Dirichlet	Allocation	

LSA	 Latent	Semantic	Analysis	

MOEA	 Multi-Objective	Evolutionary	Algorithm	

PLSA	 Probabilistic	Latent	Semantic	Analysis	

PLSI	 Probabilistic	Latent	Semantic	Indexing	

OAI-
PMH	

Open	Archive	Initiative	Protocol	for	Metadata	Harvesting	

RDF	 Resource	Description	Framework	

URI	 Uniform	Resource	Identifier	

URL	 Uniform	Resource	Locator	

NER	 Named	Entity	Recognition	

	 	

	 	

	 	

	 	

	 	

	

	 	



	 	 	

Page	49	of	77	
	

Appendix	2	–	Learning	Algorithm	

This	section	is	an	advanced	text	over	the	deliverable	to	be	submitted	for	M30,	so	as	to	make	it	
available	to	reviewers.	

6.1 Terminology	extraction	
The	initial	task	of	the	ontology	learning	process	is	terminology	extraction,	which	consists	in	obtaining	
the	initial	domain	terms	using	statistical	domain	relevance	and	pertinence	indicators.	The	input	for	
the	terminology	extraction	task	 is	the	set	of	 items	of	the	domain	terms	that	belong	to	the	domain	
terminology.	Terminology	extraction	consists	in	the	following	steps:		

• Domain	corpus	 linguistic	annotation.	A	 linguistic	annotation	process	 is	performed	on	each	
of	documents	that	make	up	the	domain	corpus,	invoking	the	NLP	service.	Apart	from	all	the	
afore	described	generic	NLP	tasks,	the	NLP	service	also	performs	what	we	refer	to	as	term	
candidates	 extraction.	 A	 transducer	 is	 run	 over	 each	 sentence	 in	 the	 documents	 in	 the	
domain	 corpus	 in	 order	 to	 find	 term	 candidates,	which	 can	be	 seen	 as	 noun	phrases	 that	
structurally	 can	 be	 terms,	 yet	 they	 might	 not	 meet	 the	 consensus	 and	 relevance	
requirements.	 The	 term	 candidates	 transducer	 executes	 a	 grammar	 that	 formalizes	 the	
following	noun	phrases	cases,	which	are	those	proposed	in	[22]	that	do	not	harm	precision.	

• Termhood	calculation.	For	each	term	candidate	detected	by	the	transducer	in	the	previous	
step	the	Learner	calculates	its	termhood,	which	is	determined	by	the	following	measures:	

• Domain	Consensus	[23].	An	entropy-related	measure	that	expresses	how	spread	is	the	
use	of	a	certain	term	throughout	the	documents	of	the	domain	document	corpus,	since	
distributed	usage	expresses	a	form	of	agreement	and	consensus.	It	is	computed	as:	

    

€ 

DC (t) = − P( t
d

) log(P( t
d

))( )
d∈D
∑ 	

Where	d	is	any	document	belonging	to	the	domain	D	

• Domain	Relevance	[23].	A	probabilistic	measure	of	how	relevant	a	term	t	is	in	a	domain	
D	with	respect	to	other	domains.	It	is	expressed	as	the	probability	of	the	term	appearing	
in	the	considered	domain	D	divided	by	the	probability	of	such	term	in	the	domain	where	
is	it	is	more	likely.	Formally	it	can	be	expressed	as:			

    

€ 

DR(t) =
P( t

D
)

max
k

P( t
Dk

) 	

• C-value	 [22].	 This	 statistical	 measure	 is	 based	 in	 the	 C-value/NC-value	 [22],	 since	 we	
leave	out	the	contextual	part	of	this	measure.	

    

€ 

Cvalue(t) =

log2 t ⋅#(t) t has no 
superterms 

log2 t ⋅ #(t)− 1
super(t)

#(st)
st∈super(t )
∑

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

otherwise

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

	



	 	 	

Page	50	of	77	
	

	 							Where		

o #(t)	 represents	 the	 number	 of	 occurrences	 of	 the	 term	 t	 in	 the	 considered	
domain.	

o ||t||	represents	the	length	of	the	term	t.	

o super(t)	 is	 the	 set	 of	 superterms,	 terms	 found	 in	 the	 domain	 in	 which	 t	 is	
contained.	

The	termhood	of	a	term	candidate	is	finally	determined	as	the	linear	combination	of	the	
previous	measures	(those	that	are	not	probabilistic	are	normalized	to	the	[0,1]	range).	
Formally	we	write:		

	

6.2 Relations	Extraction	
For	 the	 extraction	 of	 relations	we	 propose	 the	 use	 of	 a	 distantly	 supervised	 approach,	 a	 relation	
extractor	 for	 each	 type	 of	 relations,	 currently	 hypernymy	 relations.	 The	 intuition	 of	 distant	
supervision	(term	coined	by	[24]	but	 initially	proposed	by[25])	 is	that	any	sentence	that	contains	a	
pair	of	entities	that	participate	in	a	known	and	curated	knowledge	base	relation	is	likely	to	express	
that	relation.	It	can	also	be	seen	as	a	case	of	the	noisy	channel	model,	in	which	there	is	a	knowledge	
base	that	acts	as	an	oracle	that	expresses	clearly	the	relationships	between	knowledge	entities,	and	
such	 information	 is	 scrambled	 thorough	 the	 textual	 domain	 corpus.	 Using	 a	 distant	 supervision	
approach	we	aim	at	learning	the	patterns	of	how	this	information	is	transformed	into	the	sentences	
where	 these	 entities	 appear.	 Initially	 we	 use	 [24]	 intuition	 and	 we	 assume	 that	 such	 relations	
manifest	 themselves	 in	 a	 sentence	 basis	 (we	 leave	 as	 future	 line	 of	 work	 the	 consideration	 of	
multiple	sentences).		

The	 main	 advantage	 of	 using	 a	 distant	 supervised	 method	 is	 that	 the	 training	 corpus	 is	 clearly	
separated	from	the	domain	of	appliance	corpus.	Statistics-based	methods,	which	we	apply,	need	a	
huge	 training	corpus,	 it	might	be	possible	 that	 the	domain	corpus	were	we	apply	such	methods	 is	
not	big	enough.	With	a	distant	supervised	approach	we	train	our	classifiers	in	a	domain-independent	
manner.	The	training	corpus	is	created	automatically	by	creating	a	domain-independent	text	corpus	
and	leveraging	the	information	contained	in	available	knowledge	bases.	Once	these	classifiers	have	
been	trained	to	recognize	relations	 in	generic	text,	these	classifiers	can	be	successfully	used	 in	the	
concrete	domain	corpus,	being	the	system	able	to	extract	the	domain-specific	relations.		

The	 method	 followed	 by	 the	 Learner	 for	 applying	 a	 distant	 supervision	 approach	 for	 hypernym	
relations	extraction	is	composed	by	these	following	steps:	

• Training	phase.	Before	the	Learner	can	extract	relations	from	a	given	domain,	it	must	have	
been	previously	trained	using	a	 large	domain-independent	corpus	of	text	and	one	or	more	
knowledge	bases	used	as	oracles.	Using	these	elements,	we	perform	the	following	steps:	

o Relational	sentences	corpus	creation.	The	relational	sentences	corpus	is	composed	
by	 a	 large	 set	 of	 sentences	where	 two	 entities	 are	 related.	 In	 order	 to	 build	 such	
corpus	in	an	automatic	way:	

    

€ 

termhood (t) = αnorm(Cvalue(t)) +βnorm(DC ) +γDR



	 	 	

Page	51	of	77	
	

§ We	 use	 the	 periodically	 available	 English	Wikipedia	 dumps56	 as	 our	 initial	
English	domain-independent	textual	corpus.	

§ For	 each	 sentence	 in	 each	 of	 the	 sections	 of	 each	 wikipedia	 article,	 the	
Learner	 inspects	 the	 entities	 that	 appear	 as	 term	 candidates	 (using	 the	
annotations	provided	by	the	NLP	service)	and	creates	all	their	possible	pairs.	

§ For	 each	of	 these	pairs,	 the	 Learner	 checks	whether	 there	 is	 a	 hypernymy	
relationship	stored	in	the	knowledge	base	between	these	entities	making	a	
query	 to	 the	 KB	 service.	 If	 so,	 the	 sentence,	 along	 with	 the	 source	 and	
targets	of	the	relation,	is	added	to	the	relational	sentences	corpus.		

In	order	to	perform	such	data	intensive	task,	the	relational	sentences	corpus	creator	
system	 has	 been	 implemented	 on	 top	 of	 the	 Spark57	 engine	 for	 large-scale	 data	
processing.	 A	 cluster	 of	 heterogeneous	 machines	 can	 be	 easily	 used	 to	 speed	 up	
such	process.	

o Relational	 patterns	 corpus	 creation.	 For	 each	 sentence	 in	 the	 training	 corpus	
relation	patterns	 can	be	 automatically	 derived	 (note	 that	 one	 annotated	 sentence	
may	 generate	 several	 relation	 patterns).	 Sentences	 are	 translated	 into	 relation	
patterns	 because	 on	 the	 one	 hand	 it	 is	 helpful	 to	 abstract	 away	 from	 concrete	
subtleties	that	do	not	add	meaningful	 information	and	burden	the	possibility	of	 its	
generalization	 to	 similar	 sentences;	 and	 on	 the	 other	 hand,	 to	 enhance	 the	
definitional	sentence	with	additional	linguistic	information	that	provides	much	more	
information	that	their	simple	surface	form.	For	each	sentence	the	Learner	generates	
one	or	several:	

§ Lexical	relational	pattern.	The	set	of	lexical	hypernym	relation	patterns	are	
extracted	creating	a	 lexical	hypernym	relation	pattern	for	each	sentence	 in	
the	 relational	 sentences	 corpus,	 which	 implies	 performing	 the	 following	
actions:	

• We	only	consider	a	window	of	words	composed	by	the	words	between	
the	source	and	target	of	the	definition,	and	with	a	size	W	to	the	left	of	
the	source	term	and	to	the	right	of	the	destination	term.	The	rest	of	the	
words	in	the	sentence	are	removed.	

• The	beginning	/end	of	the	sentences	are	marked	with	a	special	symbol	
in	case	that	they	belong	to	the	considered	window.	

• A	linguistic	annotation	process	 is	performed	for	each	of	the	considered	
words	in	the	sentence,	and	we	annotate	words	with	their	part-of-speech	
grammatical	category;	and	the	source	and	destination	of	 the	definition	
are	 associated	 with	 their	 7-class	 Stanford	 NER	 (i.e.	 Date,	 Location,	
Money,	Organization,	Percent,	Person,	Time)	

• All	the	words	that	are	not	verbs	are	substituted	by	their	part-of-speech	
annotation,	 symbols	are	 left	unaltered,	 and	 the	 source/target	 terms	 in	
the	definition	are	 replaced	by	 the	"<source>"/"<target>"	 token	plus	 its	
NER	category	annotation.	

																																																													
56	Available	at:	https://dumps.wikimedia.org/enwiki/	
57	http://spark.apache.org/	



	 	 	

Page	52	of	77	
	

§ Syntactic	relational	pattern.	The	set	of	syntactic	hypernym	relation	patterns	
are	 extracted	 creating	 a	 syntactic	 hypernym	 relation	 pattern	 for	 each	
sentence	 in	 the	 relational	 sentences	 corpus,	 which	 implies	 performing	 the	
following	actions:	

• A	 linguistic	annotation	process	 is	performed	for	each	of	 the	considered	
words	in	the	sentence,	and	we	annotate	words	with	their	part-of-speech	
grammatical	 category;	and	 the	 source	and	destination	of	 the	definition	
are	 associated	 with	 their	 7-class	 Stanford	 NER	 (i.e.	 Date,	 Location,	
Money,	Organization,	Percent,	Person,	Time)	

• A	grammatical	dependency	annotation	is	performed	in	the	sentence.	We	
remove	the	directionality	of	its	edges,	transforming	the	sentence	into	an	
undirected	 graph;	 its	 nodes	 are	 the	 words	 plus	 their	 part-of-speech	
annotations,	and	its	arcs	binary	grammatical	relations.	

• Following	 the	 Shortest	 Path	 Hypothesis	 [26]	 all	 the	words	 that	 do	 not	
belong	to	the	shortest	path	between	the	source	and	target	entities	are	
discarded.	 In	case	 that	 there	 is	more	 than	one	shortest	path,	a	pattern	
for	each	path	is	created.	

• All	the	words	that	are	not	verbs	are	substituted	by	their	part-of-speech	
annotation,	the	source/target	terms	in	the	definition	are	replaced	by	the	
"<source>"/"<target>"	token	plus	its	NER	category	annotation.	

• Lastly,	 as	 [26]	 proposes,	 the	 negative	 polarity	 of	 verbs	 must	 be	
annotated	 (i.e.	 if	 we	 have	 a	 negation	 modifier,	 the	 prefix	 '-'	 is	
concatenated	to	the	word	surface	form).	

o Classifier	Training.	Once	the	training	corpus	of	definitional	sentences	has	been	
transformed	into	a	potentially	bigger	corpus	of	hypernym	relation	patterns,	the	
latter	is	used	to	train	two	classifiers.	These	classifiers,	once	trained,	will	be	able	
to	recognize	sentences	that	express	hypernym	relation	between	two	entities	of	
the	sentence.	More	precisely	we	perform:	

§ Generative	 lexical	 classifier	 training.	 For	 recognizing	 the	 lexical	 features	
along	with	the	structure	and	ordering	of	definition	sentences,	we	propose	a	
generative	approach.	We	create	a	probabilistic	language	model	by	analyzing	
the	 set	 of	 lexical	 hypernym	 relation	 patterns	 that	 abstracts	 the	 training	
corpus.	Once	this	probabilistic	model	is	built,	the	generative	probability	of	a	
given	sentence,	conditioned	to	such	probabilistic	 language	model	becomes	
the	 probability	 of	 the	 sentence	 of	 being	 definitional.	 In	 order	 to	 formalize	
the	language	model	we	use	bigram	model.	

Once	 we	 have	 trained	 the	 probabilistic	 language	 model	 using	 the	 set	 of	
lexical	 hypernym	 relation	 patterns,	 we	 can	 use	 the	 likelihood	 of	 new	
hypernym	 relation	 pattern	 to	measure	 how	 likely	 it	 is	 to	 be	 a	 definitional	
sentence	 that	 signifies	 a	 hypernym	 relation.	 In	 other	 words,	 given	 a	
sentence	 form	 the	domain	corpus,	and	 two	of	 its	 terms,	 the	probability	of	
being	a	definitional	sentence	is	given	by	the	following	expression:	

	    

€ 

Ph
l (terms ,termt ,s) = P(hrpl (terms ,termt ,s) λ)



	 	 	

Page	53	of	77	
	

Where	

• 	 is	 a	 function	 that	 given	 a	 sentence	 	 and	 two	
terms	 ,	 generates	 the	 corresponding	 lexical	 hypernym	
relation	pattern.	

• 	is	the	probability	of	an	observation	O	given	the	language	model	
	that	we	learnt	using	the	training	corpus.	

§ Discriminative	 syntactic	 classifier	 training.	 This	 classifier	 is	 trained	 using	
syntactic	hypernym	patterns	from	the	relational	sentences	corpus,	and	once	
we	 have	 removed	 possible	 repeated	 patterns,	 each	 of	 these	 patterns	
becomes	 a	 feature	 for	 the	 logistic	 regression	 classifier.	 If	 we	 extract	 N	
distinct	patterns,	the	feature	vector	would	be	an	N-dimension	vector;	the	i-
th	position	represents	whether	the	i-th	syntactic	hypernym	relation	pattern	
is	 matched	 or	 not.	 Using	 the	 training	 corpus,	 the	 N-dimension	 feature	
vector,	and	a	10-fold	cross	validation	process	we	train	the	logistic	regression	
classifier.	 For	 the	 learning	 algorithm	 we	 use	 Stochastic	 Gradient	 Descent	
(SGD)	 since	 it	 has	 proved	 to	 be	 an	 efficient	 and	 suitable	 technique	 in	 the	
context	 of	 large-scale	 learning.	 The	 probability	 of	 a	 sentence	 of	 being	
definitional	 for	 two	 terms,	 from	 a	 syntactic	 perspective,	 is	 determined	 by	
the	following	expression:	

	

Where:	

• 		is	the	regularized	weight	N+1-dimension	vector	trained	using	the	
SDG	

• 	is	a	function	that	given	a	sentence	s	returns	an	N+1-dimension	
vector,	its	i-th	element	is	1/0	depending	on	whether	it	matches	the	
i-th	syntactic	hypernym	relation	pattern	of	the	training	set.		

• 		first	element	is	always	1.	

• Extraction	phase.	Once	the	Learner	has	been	trained,	it	can	perform	what	we	refer	to	as	the	
extraction	 phase.	 Given	 a	 domain,	 in	 the	 extraction	 phase	 the	 Learner	 extracts	 the	
hypernym	 relations	 that	 appear	 in	 textual	 items	of	 the	domain.	 It	 translates	 into	 checking	
each	sentence	of	the	domain	items	to	determine	whether	 it	 is	a	sentence	that	expresses	a	
hypernym	relation	or	not.	If	a	relation	is	found	a	new	relation	event	is	generated,	containing	
both	 the	 found	 relation,	 its	 estimated	 probability,	 and	 the	 sentence	 itself	 (becoming	 the	
hypernym	 relation	 provenance	 sentence).	 More	 specifically,	 for	 each	 sentence	 sk	 that	
belongs	to	the	domain	specific	corpus	the	Learner	carries	out	these	actions:	

• The	 set	 of	 terms	 candidates	 of	 the	 sentence	 are	 obtained	 using	 the	 very	 same	
transducer	described	for	the	terminology	extraction.	

• The	probability	of	this	sentence	of	being	definitional	for	each	pair	of	terms	selected	from	
the	 terms	 candidates	 is	 calculated	 as	 the	 linear	 combination	 of	 the	 probabilities	
obtained	using	the	generative	lexical	classifier	and	the	discriminative	syntactic	classifier.	

    

€ 

hrpl (terms ,termt ,s)   

€ 

s

    

€ 

(terms ,termt )

    

€ 

P(O λ)

€ 

λ

    

€ 

Ph
s (terms ,termt ,s) =

1
1+ e−βf (s)

€ 

β

    

€ 

f (s)

    

€ 

f (s)



	 	 	

Page	54	of	77	
	

Using	 the	 same	notation	as	 in	 the	 training	phase,	 this	probability	 can	be	expressed	as	
follows:	

	

In	 case	 that	 this	 probability	 is	 greater	 than	 a	 configurable	 threshold	 the	 hypernym	 relation	 is	
considered	as	found	between	these	two	terms	in	the	given	domain;	and	a	created	relation	event	is	
fired	then	as	a	consequence.		

	

	

	

	

	 	

    

€ 

Ph(termi ,term j ,sk ) = αPh
s (termi ,term j ,sk ) +βPh

l (termi ,term j ,sk )



	 	 	

Page	55	of	77	
	

Appendix	3	–	Similarity	Algorithm	

This	 section	 is	 an	 advanced	 text	 over	 the	 deliverable	 to	 be	 submitted	 for	M30,	 so	 as	 to	make	 it	
available	to	reviewers.	

6.3 Topic	Models	
The	 utility	 of	 topic	models	 stems	 from	 the	 property	 that	 the	 inferred	 hidden	 structure	 that	 they	
reveal	 resembles	 the	 thematic	 structure	 of	 the	 collection.	 A	 hidden	 structure	 is	 a	 topic	 structure	
such	 as	 topics	 distribution,	 per-resource	 topic	 distributions	 or	 per-	 resource	 per-word	 topic	
assignments.	 In	 turn,	a	 topic	 is	 a	 distribution	 over	 terms	 that	 is	 biased	 around	 those	 associated	
under	a	single	theme.	This	interpretable	hidden	structure	annotates	each	resource	in	the	collection	
and	these	annotations	can	be	used	to	deepen	the	analysis	about	relationships	between	resources.	In	
this	way,	topic	modeling	provides	us	an	algorithmic	solution	to	managing,	organizing	and	annotating	
large	 collections	 of	documents	 according	 to	 their	 topics,	 i.e.	 according	 to	 the	 distribution	 of	 their	
words	in	topics.	

Topic	modeling	algorithms	do	not	require	any	prior	annotations	or	labelling	of	the	documents.	The	
topics	 emerge,	 as	hidden	 structures,	 from	 the	analysis	 of	 the	original	 texts.	 The	main	 challenge	 is	
how	to	use	the	observed	resources	to	infer	a	hidden	topic	structure.		

6.3.1 Latent	Dirichlet	Allocation	
The	 simplest	 generative	 topic	 model	 is	 Latent	 Dirichlet	 Allocation	 (LDA)[5].	 This	 and	 other	 topic	
models	 such	 as	 Probabilistic	 Latent	 Semantic	 Analysis	 (PLSA)	 [7]	 are	 part	 of	 the	 larger	 field	 of	
probabilistic	modeling.	They	are	well-known	latent	variable	models	for	high	dimensional	count	data,	
such	as	text	data	in	the	bag-of-words	representation	or	any	other	count-based	data	representation	
but,	while	LDA	has	roots	 in	LSA	and	PLSA	(it	was	proposed	as	a	generalization	of	PLSA),	 it	was	cast	
within	 the	 generative	 Bayesian	 framework	 to	 avoid	 some	 of	 the	 overfitting	 issues	 that	 were	
observed	 with	 PLSA.	 As	 mentioned	 before,	 since	 PLSA	 is	 a	 discriminative	 model,	 it	 is	 unable	 to	
describe	topics,	i.e.	hidden	structures,	but	LDA	built	a	generative	model	to	avoid	that	limitation.	

In	 generative	 probabilistic	 modeling,	 data	 is	 treated	 as	 arising	 from	 a	 generative	 process	 that	
includes	hidden	variables.	This	generative	process	defines	a	 joint	probability	distribution	over	both	
the	 observed	 (O)	 and	 hidden	 random	 variables	 (μ).	 Then	 data	 is	 analyzed	 by	 using	 that	 joint	
distribution	 to	 compute	 the	 conditional	 distribution	 of	 the	 hidden	 variables	 given	 the	 observed	
variables	p(μ	|	O).	This	conditional	distribution	 is	also	called	 the	posterior	distribution.	 In	LDA,	 the	
observed	variables	are	the	words	of	the	documents,	the	hidden	variables	are	the	topic	structure	and	
the	generative	process	 is	 the	problem	of	 computing	 the	posterior	distribution,	 i.e.	 the	 conditional	
distribution	of	the	hidden	variables	given	the	documents:	

p(O,	μ)	=	p(O	|	μ)	·	p(μ)	=	p(μ	|	O)	·	p(O)	

This	statistical	model	tries	to	capture	the	intuition	that	documents	exhibit	multiple	topics.	Each	
document	exhibits	the	topic	in	different	proportion,	each	word	in	each	document	is	drawn	from	one	
of	the	topics,	where	the	selected	topic	is	chosen	from	the	per-document	distribution	over	topics.	All	



	 	 	

Page	56	of	77	
	

the	documents	in	the	collection	share	the	same	set	of	topics,	but	each	document	exhibits	these	
topics	in	different	proportion.	Documents	are	each	represented	as	a	vector	of	counts	with	W	
components,	where	W	is	the	number	of	words	in	the	vocabulary.	Each	document	in	the	corpus	is	
modelled	as	a	mixture	over	K	topics,	and	each	topic	k	is	a	distribution	over	the	vocabulary	of	W	
words.	Each	topic	is	drawn	from	a	Dirichlet	with	parameter	β,	while	each	document’s	mixture	is	
sampled	from	a	Dirichlet	with	parameter	α.	Formally,	a	topic	is	a	multinomial	distribution	over	words	
of	a	fixed	vocabulary	representing	some	concept.	

The	 Dirichlet	 distribution	 is	 a	 continuous	multivariate	 probability	 distribution	 parameterized	 by	 a	
vector	of	positive	reals	whose	elements	sum	to	1.	It	is	continuous	because	the	relative	likelihood	for	
a	random	variable	to	take	on	a	given	value	is	described	by	a	probability	density	function,	and	also	it	
is	multivariate	because	it	has	a	list	of	variables	each	of	whose	value	is	unknown.	In	fact,	the	Dirichlet	
distribution	is	the	conjugate	prior	of	the	categorical	distribution	and	multinomial	distribution	

From	 a	 collection	 of	 documents,	 LDA	 infers:	 per-word	 topic	 assignment,	 per-document	 topic	
proportions	and	per-corpus	topic	distributions.	Exact	inference,	i.e.	computing	the	posterior	over	the	
hidden	 variables,	 for	 this	model	 is	 intractable	 [5],	 then	 a	 variety	 of	 approximate	 algorithms	 have	
been	 proposed	 [8]	 such	 as	 collapsed	 Gibbs	 sampling	 (CGS),	 variational	 Bayesian	 inference	 (VB),	
collapse	variational	Bayesian	inference	(CVB),	maximum	likelihood	estimation	(ML)	and	maximum	a	
posteriori	(MAP).	

Unlike	a	clustering	model,	where	each	document	is	assigned	to	one	cluster,	LDA	allows	documents	
to	exhibit	multiple	 topics.	For	example,	LDA	can	capture	that	one	article	might	be	about	”biology”	
and	”statistics”,	while	another	might	be	about	”biology”	and	”physics”.	Since	LDA	 is	unsupervised,	
the	 themes	of	 “physics”,	 “biology”	and	“statistics”	 can	be	discovered	 from	 the	 corpus;	 the	mixed-
membership	assumptions	lead	to	sharper	estimates	of	word	cooccurrence	patterns.	

6.3.1.1 Multi-Objective	Evolutionary	approach	for	LDA	parameterization	

Since	 LDA	 is	 characterized	 by	 Dirichlet	 distributions	 of	 topics	 and	 documents,	 i.e.	 multi-	 variate	
generalization	of	the	Beta	distribution,	it	is	parameterized	by	two	positive	shape	parameters,	α	and	
β,	 that	 appear	 as	 exponents	 of	 the	 random	 variable	 and	 control	 the	 shape	 of	 the	 distribution.	
Moreover,	 the	 dimensionality	 of	 each	Dirichlet	 distribution	 has	 to	 be	 fixed.	 So	 the	 dimensionality	
value	 of	 the	 Dirichlet	 distribution	 of	 topics	 is	 known	 and	 equals	 to	 the	 size	 of	 the	 vocabulary.	
However,	 the	 dimensionality	 of	 the	 Dirichlet	 distribution	 of	 documents,	 i.e.	 number	 of	 topics,	 is	
assumed	to	be	known	and	fixed.	

Thus,	we	need	to	estimate	three	parameters:	the	number	of	topics	(k),	the	concentration	parameter	
(α)	for	the	prior	placed	on	documents’	distributions	over	topics	and	the	concentration	parameter	(β)	
for	the	prior	placed	on	topics’	distributions	over	terms	.	Some	authors	[8]	have	proposed	inferences	
to	 calculate	 these	 parameters,	 however	 the	 implementation	 of	 LDA	 made	 by	 Spark	 (based	 on	
Expectation/Maximization)	and	used	by	epnoi	does	not	admit	these	values	yet.	

	



	 	 	

Page	57	of	77	
	

New	values	of	 log-likelihood	and	 log-prior	are	obtained	for	each	new	LDA	execution	that	measures	
the	goodness	of	the	model.	The	higher	these	values	are,	the	better	the	model	fits.	For	this	reason,	
having	several	conflicting	objetives,	i.e.	 improvement	of	one	objective	may	lead	to	deterioration	of	
another,	 and	having	parameters	 to	estimate	 (k,	α	 and	β),	 a	Multi-Objetive	Evolutionary	Algorithm	
(MOEA)	is	used	to	find	the	Pareto	optimal	solution.	

A	single	solution,	which	optimizes	log-likelihood	and	log-prior	simultaneously	does	not	exist.	Instead,	
the	best	trade-off	solution	called	Pareto	optimal	will	be	obtained.	Taking	into	account	performance	
behaviour	 [10]	and	to	prevent	new	objectives	derived	from	the	use	of	 the	model,	 the	Non-Sorting	
Genetic	Algorithm-III	(NSGA-III)	[11]	is	chosen	and	the	optimization	problem	is	defined	as	follows:	

• Objectives:	

o min	||	log(likelihood)	||	

o min	||	log(prior)	||	

• Constraints:	

o 5.1	 <	 α	 <	 20.0	 :	 Document	 Concentration.	 It	 represents	 the	 distribution	 of	 a	
document	 in	 topics.	 That	 is,	 how	 specific	 is	 a	document.	 The	 lower	boundary	of	α	
(5.1)	is	greater	than	the	higher	boundary	of	β	(5.0)	because,	in	our	opinion,	if	a	term	
belongs	to	more	than	one	topic,	a	document	will	contain	equal	or	more	number	of	
topics	 than	 those	 contained	 in	 the	 term.	Moreover,	we	 have	 considered	 than	 the	
number	 of	 topics	 in	 a	 document	 is,	 at	 least,	 4	 times	 greater	 than	 the	 topics	
contained	in	a	term,	for	that	reason	the	higher	boundary	is	20.0	for	α	and	5.0	for	β.	

o 1.0	 <	 β	 <	 5.0	 :	 Topic	 Concentration.	 It	 represents	 the	 distribution	 of	 a	 topic	 over	
terms.	That	 is,	how	a	term	can	belong	to	several	topics.	 In	our	opinion,	a	term	can	
only	 belong	 to	 no	 more	 than	 5	 topics,	 because	 greater	 values	 will	 create	 more	
ambiguous	models.	

o –	0	<	k	<	2	∗	 ︎ p/2	:	Number	of	topics.	Usually	around	the	root	square	of	the	half	of	
population	(p).	

• Crossover:	Motivated	by	the	success	of	binary-coded	genetic	algorithms	in	prob-	 lems	with	
discrete	search	space,	the	operator	selected	was	Simulated	Binary	Crossover	(SBX)	[12]	that	
solves	 problems	 having	 a	 continuous	 search	 space	 instead	 of	 binary.	 This	 operator	 has	 a	
search	power	similar	to	that	of	the	single-point	crossover.	 It	was	set	to	0.9	to	facilitate	the	
explorative	capacity	of	the	algorithm.	

• Mutation:	 Mutation	 operators	 have	 been	 utilized	 extensively	 in	 MOEAs	 as	 so-	 lution	
variation	 mechanisms.	 Mutation	 operators	 assist	 to	 the	 better	 exploration	 of	 the	 search	
space	 [13]	 .	 Different	 approaches	 have	 been	 proposed	 depending	 on	 the	 representation	
used	 in	MOEAs	 such	 as	 binary	 or	 real	 values.	 In	 this	 case,	 the	 operator	 selected	was	 the	
Polynomial	Mutation	operator	 [14]	 [15]	which	allows	big	 jumps	 in	 the	search	space	of	 the	
decision	 variable,	 escaping	 from	 local	 optima	 and	 modifying	 a	 solution	 when	 on	 the	
boundary.	It	was	set	to	1.0	to	promote	the	explorative	analysis.	

• Selection:	 The	 global	 best	 solution	 is	 selected	 by	 a	 N-ary	 Tournament	 operator.	 This	
operator	prefers	feasible	solutions	over	infeasible	solutions	(for	constraint	han-	dling),	non-
dominated	 solutions	 over	 dominated	 solutions	 (for	 handling	 multiple	 objetives)	 and	 less-
crowed	solutions	over	more-crowded	solutions	(for	the	mainte-	nance	of	diversity).	



	 	 	

Page	58	of	77	
	

The	 boundaries	 of	 the	 constraints	 have	 been	 defined,	 as	 previously	mentioned,	 according	 to	 the	
implementation	 of	 the	 LDA	 algorithm	 made	 by	 Apache	 Spark58.	 The	 minimum	 value	 of	 the	
parameters,	 alpha	and	beta,	 is	 defined	 to	1.0	by	default,	 but	 they	will	 be	different	 in	our	 system.	
Since	 the	 beta	 parameter	 describes	 the	 concentration	 of	 topics	 in	 words,	 we	 consider	 only	 low	
values	(lower	than	5.0	and	greater	than	1.0)	trying	to	get	more	representative	words	for	each	topic.	
Defining	this	range	of	values,	the	algorithm	will	avoid	using	the	same	words	to	characterize	different	
topics,	getting	distinguished	distributions	of	topics	in	documents.	Moreover,	defining	high	values	for	
the	alpha	parameter	(between	5.1	and	20.0),	the	algorithm	considers	that	a	document	can	contain	
more	 than	 one	 topic,	 but	 these	 distributions	 will	 not	 be	 smooth.	 We	 are	 looking	 for	 a	
characterization	 that	 enables	 us	 to	 handle	more	 than	 one	 topic	 in	 a	 document,	 but	 also	 enough	
differences	 between	 the	 topic	 distributions	 of	 different	 documents	 to	 group	 documents	 that	 are	
talking	about	the	same	area	or	in	the	same	way.	

The	number	of	topics	will	be	between	1	and	an	empirical	value	defined	by	the	root	square	of	the	half	
of	 population	 (p).	 This	 approximation	 is	 useful	 to	 avoid	 a	 high	 exploration	 during	 the	 learning	
process	focusing	on	a	smaller	set	of	values.	

6.4 Similarity	Measure	
Measuring	 the	 similarity	 of	 documents	 is	 a	 key	 task	 from	 which	 to	 obtain	 useful	 knowledge.	 Its	
definition	must	be	general	enough	to	overcome	the	particular	characteristics	of	the	different	types	
of	items	that	documents	aggregate.		

Since	 a	 document	 contains	 two	 kinds	 of	 information:	 context-based,	 i.e.	 authors,	 license	 rights,	
format,	 etc	 and	 content-based,	 i.e.	 text,	 image,	 code,etc	 the	 similarity	metric	 should	 include	both	
concepts.		

In	short,	the	measure	to	calculate	the	similarity	between	two	documents	or	items	is	a	weighted	sum	
of	context-based	similarity	(simctx)	and	content-based	similarity	(simcont):	

	

where	α	∈	[0,	1]	

6.4.1 Content-based	Similarity	
When	a	document	is	aggregated	by	other	documents,	the	bag-of-words	used	to	calculate	the	topics	
distributions	 is	 the	 sum	 of	 words	 used	 in	 each	 nested	 document.	 For	 this	 reason,	 the	 topics	
distribution	of	the	root	of	an	aggregation	is	enough	to	describe	the	complete	document.	

Taking	into	account	this	premise,	the	similarity	measure	between	two	documents,	items	or	parts	will	
be	 based	 on	 the	 distance	 between	 their	 topics	 distributions.	 Since	 they	 are	Dirichlet	 distributions	
(probability	mass	 functions),	 the	measure	used	was	the	Jensen-Shannon	divergence,	which	can	be	

																																																													
58	http://spark.apache.org/	



	 	 	

Page	59	of	77	
	

defined	 as	 the	 average	 of	 the	 Kullback-Leibler	 (KL)	 divergence	 between	 them.	 KL	 has	 two	 major	
problems:	in	the	case	that	one	of	topics	distribution	is	zero,	KL	is	not	defined	and	it	is	not	symmetric,	
what	 does	 not	 fit	well	with	 semantic	 similarity	measures	which	 in	 general	 are	 symmetric	 [16].	 To	
solve	 these	 problems,	 Jensen-Shannon	 divergence	 considers	 the	 average	 of	 the	 distributions	 as	
below	[17]:	

	

where	T	is	the	number	of	topics	and	p,	q	are	the	topics	distributions.	

Our	similarity	measure	use	the	Jensen-Shannon	divergence	transformed	into	a	similarity	measure	as	
follows	[18]	:	

	

where	 Ri	 ,	 Rj	 are	 the	 research	 entities	 (i.e.	 documents,	 items	 or	 parts)	 and	 p,	 q	 the	 topics	
distributions	of	each	of	them.	

6.4.2 Context-based	Similarity	
Currently,	context-based	similarity	 is	only	 related	to	author-based	similarity.	The	plan	 is	 to	 include	
more	elements	in	the	future,	both	extracted	directly	from	the	resource	or	inferred,	so	as	to	increase	
the	accuracy	of	the	measure.		

But	now	the	system	must	work	properly	with	authors:	

	

Before	obtaining	the	similarity	of	authors	we	need	to	define	how	an	author	(i.e.	user)	 is	described.	
Similar	to	feature	vectors	to	describe	the	content	of	a	resource,	an	author	is	represented	by	a	vector	
that	 describes	 adequately	 his/her	 most	 relevant	 aspects	 to	 allow	 us	 to	 take	 measures	 between	
them.	The	dimension	of	this	vector	will	depend	on	the	cardinality	of	the	used	space.	

Based	 on	 topic-models,	 the	 feature	 vector	 will	 be	 a	 multinomial	 probability	 distribution	 so	 the	
challenge	 here	 is	 to	 produce	 a	 consensus	 topics	 distribution	 for	 each	 author	 by	 combining	
appropriately	 the	 topics	 distributions	 of	 their	 publications.	 The	 most	 popular	 choice	 for	 this	
aggregation	 is	 Linear	 Pooling,	 which	 assigns	 each	 individual	 forecast	 a	 weight	 which	 reflects	 the	
importance	of	 the	publication,	but	 if	we	provide	an	equal	weight	 to	every	probability	 the	method	
reduces	 to	 an	 arithmetic	 average.	 A	 Generalized	 Linear	 Pooling	 extends	 the	 previous	 approach	
considering	the	possibility	of	negative	weights.	However	[19]	any	linear	combination	of	(calibrated)	
forecast	 is	 uncalibrated	 and	 lacks	 sharpness	 then	 a	 Beta-transformed	 Linear	 Pooling	 is	 proposed	



	 	 	

Page	60	of	77	
	

applying	a	Beta	transformation	to	linear	pooling	operators	in	order	to	add	a	recalibration	step	to	the	
process	and	improve	their	performance.	A	probability	PG(A)	is	said	to	be	calibrated	if	P(Yk|PG(Ak))	=	
PG(Ak,k	=	1...K)[19].	Sharpness	refers	to	the	concentration	of	the	aggregated	distribution.	The	more	
concentrated	it	is,	the	sharper	it	is.	

Intuitively,	aggregation	operators	based	on	multiplication	seem	more	appropriate	than	those	based	
on	addition.	Log-linear	Pooling	 is	a	 linear	operator	of	 the	 logarithms	of	 the	probabilities	 that	does	
not	 preserve	 independence	 and	 does	 not	 verify	 the	 marginalization	 property.	 Generalized	
Logarithmic	Pooling	extends	it	by	adding	an	arbitrary	bounded	function.	On	the	other	hand,	instead	
of	 establishing	 a	 pooling	 formula	 from	 an	 axiomatic	 point	 of	 view,	 the	 aggregation	 of	 two	
distributions	 could	 be	 those	 that	 share	 properties	 (moments	 or	 conditional	 probabilities)	 and	
minimize	the	KL	divergence	between	them.	

Furthermore,	as	showed	in	several	simulation	studies	[20],	linear	pooling	performs	poorly	relative	to	
other	 pooling	 formulas	 with	 a	multiplicative	 instead	 of	 an	 additive	 structure.	 Also,	many	 of	 non-
linear	methods	 involve	a	 large	number	of	parameters,	making	 them	computationally	 complex	and	
susceptible	 to	 over-fitting.	 By	 contrast,	 parameter-free	 approaches,	 such	 as	 the	 median	 or	 the	
geometric	 mean	 of	 the	 odds,	 are	 too	 simple	 to	 be	 able	 to	 incorporate	 the	 use	 of	 training	 data	
optimally.	

Recently,	an	approach	based	on	the	 log-odds	statistical	model	of	 the	data	has	been	proposed	[21]	
being	an	alternative	way	to	express	probabilities	using	the	odds	ratio.	

However,	 the	 LDA	 model	 considers	 topics	 distributions	 as	 Dirichlet	 distribution,	 i.e	 continuous	
multivariate	 probability	 distributions	 ,	 then	 we	 can	 combine	 them	 to	 get	 a	 more	 general	 topics	
distribution	using	the	Bayes’	Theorem.		

Thus,	considering	the	following	topics	distributions	(td1,td2)	for	the	research	elements	(R1,R2)	and	
the	topics	(T1,	T2,	T3):	

td1	=	(t11,	t12,	t13)	

td2	=	(t21,	t22,	t23)	

and	taking	into	account	that:	

tij	=	p(Ti/Rj)		

the	consensus	topics	distribution	tdf	will	be:	

tdf	=(P(T1/R1,R2),P(T2/R1,R2),P(T3/R1,R2))	

As	R1	and	R2	are	independent	and	using	the	Bayes’	theorem	we	get:	

	



	 	 	

Page	61	of	77	
	

where	α	is	a	class-independent	term	depending	only	on	the	data.	As	we	have	measured	these	data,	
its	 value	 is	 not	 interesting	 here	 (we	 are	 not	 doing	 model	 comparisons),	 so	 we	 treat	 it	 as	 a	
normalization	constant	which	ensures	the	Dirichlet	constraint	:	

	

Now	that	we	know	how	to	combine	 topic	distributions,	we	can	 redefine	 the	author	 similarity	 (AS)	
expression	using	the	Jensen-Shannon	Divergence	as	a	distance	measure	of	topics	distributions	and	
taking	its	similarity	expression	for	a	given	interval	time:	

	

where	a12ˆ	and	b12ˆ	are	the	consensus	topics	distributions	of	authors	A	and	B	for	the	interval	of	time	
t1	−	t2.	

	

	 	



	 	 	

Page	62	of	77	
	

Appendix	4	–	REST	API	Endpoints	

6.5 Sources		
A	source	is	a	repository	of	documents.	

6.5.1 List	
List	of	sources	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/sources 

Request:	

curl -i -X GET http://drinventor.dia.fi.upm.es/api/0.2/sources 

Response:	

200 OK 

[  
  "http://drinventor.eu/sources/default",       
  "http://drinventor.eu/sources/e5d1f9f3e1dd61e0f8f973cf8f960d2a"  
] 

6.5.2 Read	
Details	about	the	source	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/sources/<source-id> 

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/sources/e5d1f9f3e1dd61e0f8f973cf8f960d2a 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/sources/e5d1f9f3e1dd61e0f8f973cf8f960d2a", 

  "creationTime" : "2017-02-28T14:12+0000", 

  "name" : "bournemouth2016", 

  "description" : "Bournemouth OAI-PMH repository in 2016", 

  "url" : "oaipmh://eprints.bournemouth.ac.uk/cgi/oai2?from=2016-01-01T00:00:00Z", 

  "protocol" : "oaipmh" 

} 



	 	 	

Page	63	of	77	
	

6.5.3 Update	
Modify	some	field	of	the	source	information	identified	by	a	URI	and	the	new	one	attached	to	the	
request.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/sources/<source-id> 

Request:	

curl -i -X PUT  -d '{ "name": "my-new-name"}' 
http://drinventor.dia.fi.upm.es/api/0.2/sources/11111111-2222-3333-4444-555555555555 

Response:	

204 No Content 

6.5.4 Create	
A	new	source	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/sources/ 

	

Figure	36.	Workflow	adding	a	new	source.	

The	only	information	required	is	the	url.		

These	are	some	request	examples:	

• A	OAI-PMH	repository:{ "url": "oaipmh://oa.upm.es/perl/oai2"}	

• An	RSS	feed:{"url": "rss://rss.slashdot.org/Slashdot/slashdot"}	



	 	 	

Page	64	of	77	
	

Once	the	request	is	accepted	by	the	API	module,	an	HTTP	202	response	will	be	returned	indicating	
that	the	instruction	was	accepted	and	the	resource	was	marked	for	the	creation.	

	

An	internal	event-message	is	sent	to	routing-key	source.created	to	publish	this	action	and	both	
the	Harvester	and	the	Hoarder	module,	which	are	listening	for	that	type	of	events,	will	start	to	make	
the	related	operations.	

Request:	

curl -i -X POST -H "Content-Type: application/json" -d '{ "url" : 
"oaipmh://oa.upm.es/perl/oai2" }' http://drinventor.dia.fi.upm.es/api/0.2/sources 

Response:	

200 Accepted 

{ 

  "uri" : "http://drinventor.eu/sources/2a69499b4ce15fb80f3f832702bc718b", 

  "creationTime" : "2017-02-28T15:10+0000", 

  "url" : "oaipmh://oa.upm.es/perl/oai2" 

} 

6.5.5 Remove	
Delete	the	source	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/sources/<source-id> 

Request:	

curl -i -X DELETE   http://drinventor.dia.fi.upm.es/api/0.2/sources/11111111-2222-
3333-4444-555555555555 

Response:	

204 No Content 

6.5.6 Remove	All	
Delete	all	source	instances	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/sources 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/sources 

Response:	

204 No Content 



	 	 	

Page	65	of	77	
	

6.6 Domains		
A	domain	is	a	set	of	documents.	It	defines	the	workspace	for	the	modeler	and	the	learner	module.	
By	default,	every	source	has	a	domain	associated.	

6.6.1 List	
List	of	domains	recorded	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/domains 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/domains 

Response:	

200 OK 

[  
   "http://drinventor.eu/domains/default",   
   "http://drinventor.eu/domains/b867903201b89241d168f1f5e5ea1eae",  
   "http://drinventor.eu/domains/e5d1f9f3e1dd61e0f8f973cf8f960d2a"  
] 

6.6.2 Read	
Details	about	the	domain	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/domains/<domain-id> 

Particular	search	options	can	be	defined	such	as	filtering,	sorting,	field	selection	and/or	paging,	as	
described	in	the	Parameters	Section.	

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/domains/b867903201b89241d168f1f5e5ea1eae 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/domains/b867903201b89241d168f1f5e5ea1eae", 

  "creationTime" : "2017-02-27T17:01+0000", 

  "name" : "isw14", 

  "description" : "Papers from the 14th International Semantic Web Conference" 

} 

6.6.3 Update		
Update	an	existing	instance	of	domain.	



	 	 	

Page	66	of	77	
	

PUT http://drinventor.dia.fi.upm.es/api/0.2/domains/<domain-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "name": "siggraph" }' 
http://drinventor.dia.fi.upm.es/api/0.2/domains/b867903201b89241d168f1f5e5ea1eae 

Response:	

204 No Content 

6.6.4 Create	
A	new	domain	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/domains/ 

Request:	

curl -i -X POST -H "Content-Type: application/json" -d '{ "name": "siggraph", 
"description" : "Computer Graphics Corpus" }' http://drinventor.dia.fi.upm.es/api/0.2/domains 

Response:	

200 Accepted 

{ 

  "uri" : "http://drinventor.eu/domains/4f56ab24bb6d815a48b8968a3b157470", 

  "creationTime" : "2017-02-28T15:24+0000", 

  "name" : "siggraph", 

  "description" : "Computer Graphics Corpus" 

} 

6.6.5 Remove	
Delete	the	domain	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/domains/<domain-id> 

Request:	 	

curl -i -X DELETE http://drinventor.dia.fi.upm.es/api/0.2/domains/11111111-2222-3333-
4444-555555555555 

Response:	

204 No Content 

6.6.6 Remove	All	
Delete	all	the	domain	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/domains 

Request:	



	 	 	

Page	67	of	77	
	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/domains 

Response:	

204 No Content 

6.7 Documents	
A	document	is	a	set	of	items	grouped	by	the	same	meta-information.	

6.7.1 List	
List	of	documents	recorded	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/documents 

Particular	search	options	can	be	defined	such	as	filtering,	sorting,	field	selection	and/or	paging,	as	
described	in	the	common	parameters	section.	

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/documents 

Response:	

200 OK 

[  
   "http://drinventor.eu/documents/00106da3_eb2a_4e3c_9f1b_84b1e8c10870",  
   "http://drinventor.eu/documents/001a851c_c942_43af_bff3_9edc472cfb14",  
   "http://drinventor.eu/documents/00668816_f2c7_462a_a781_9b14c65042eb",  
   "http://drinventor.eu/documents/009571ce_1899_4280_bef8_f5003e8ef6b9",  
   "http://drinventor.eu/documents/00ee35ca_e662_4432_9298_5797bf43623e",  
   "http://drinventor.eu/documents/00f89f8b_935e_46ff_b8f8_20395c43c2a1",  
   "http://drinventor.eu/documents/01073f0f_d710_4b4e_961c_725ef5d3f6e8",  
   "http://drinventor.eu/documents/010950f6_4b98_4f32_a1c6_6ccb8c3286f4",  
   "http://drinventor.eu/documents/019cd23f_fe23_495e_bccf_4ea225ed1877", 
… 
] 

6.7.2 Read	
Details	about	the	document	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/documents/<document-id> 

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/documents/01073f0f_d710_4b4e_961c_725ef5d3f6e8 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/documents/01073f0f_d710_4b4e_961c_725ef5d3f6e8", 



	 	 	

Page	68	of	77	
	

  "creationTime" : "2016-10-11T13:30+0200", 

  "publishedOn" : "2012", 

  "publishedBy" : "siggraph", 

  "authoredOn" : "2012", 

  "authoredBy" : "Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad 
Polthier", 

  "retrievedFrom" : "http://drinventor.ccgv.org.uk/db-
siggraph/01073f0f_d710_4b4e_961c_725ef5d3f6e8/Full.pdf", 

  "retrievedOn" : "2016-10-11T13:30+0200", 

  "format" : "pdf", 

  "language" : "en", 

  "title" : "Interactive spacetime control of deformable objects" 

} 

6.7.3 Update		
Update	an	existing	instance	of	document.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/documents/<document-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "title": "Guided Visibility 
Sampling", "language" : "en" }' http://drinventor.dia.fi.upm.es/api/0.2/documents/11111111-
2222-3333-4444-555555555555 

Response:	

204 No Content 

6.7.4 Create	
A	new	document	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/documents/ 

Request:	

curl -i -X POST -H "Content-Type: application/json" -d '{ "title": "Interactive 
spacetime control of deformable objects", "language" : "en", "retrievedFrom" : 
"http://drinventor.ccgv.org.uk/db-siggraph/01073f0f_d710_4b4e_961c_725ef5d3f6e8/Full.pdf" }' 
http://drinventor.dia.fi.upm.es/api/0.2/documents 

Response:	

200 Accepted 

{ 

    "uri": "	http://drinventor.eu/documents/01073f0f_d710_4b4e_961c_725ef5d3f6e8" 

} 



	 	 	

Page	69	of	77	
	

6.7.5 Remove	
Delete	the	documents	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/documents/<document-id> 

Request:	 	

curl -i -X DELETE http://drinventor.dia.fi.upm.es/api/0.2/documents/11111111-2222-
3333-4444-555555555555 

Response:	

204 No Content 

6.7.6 Remove	All	
Delete	all	the	document	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/documents 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/documents 

Response:	

204 No Content 

6.8 Items	
An	item	is	a	textual	resource	inside	a	document.	

6.8.1 List	
List	of	items	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/items 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/items 

Response:	

200 OK 

[  
   "http://drinventor.eu/items/c6632036e43a12a63e52c56830d9a292",  
   "http://drinventor.eu/items/6e9cd55a3f6259d141536cc276023235",  
   "http://drinventor.eu/items/3d369b1cc69f0e0449dcf5126238f74",  
   "http://drinventor.eu/items/63b730658ccf01bb0576c78ba42f2ec8",  
   "http://drinventor.eu/items/40cc66e646ca419856099730544557c2",  
   "http://drinventor.eu/items/d1fa1030951fab4ee2a0b72c1f2b60bb", 
… 
] 



	 	 	

Page	70	of	77	
	

6.8.2 Read	
Details	about	the	item	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/items/<item-id> 

Particular	search	options	can	be	defined	such	as	filtering,	sorting,	field	selection	and/or	paging,	as	
described	in	the	Parameters	Section.	

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/items/3d369b1cc69f0e0449dcf5126238f74 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/items/3d369b1cc69f0e0449dcf5126238f74", 

  "creationTime" : "2016-10-11T11:25+0000", 

  "format" : "text", 

  "url" : "/librairy/files/downloaded/001a851c_c942_43af_bff3_9edc472cfb14.pdf", 

  "content" : "ACM Reference Format\nLai, Y., Hu, S., Martin, R. 2009 …", 

  "tokens" : "acm reference format lai martin automatic topology-preserving …" 

} 

6.8.3 Update	All	
Update	the	existing	instance	of	an	item.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/items/<item-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "description": "Journal 
Paper", "date" : "20060730" }' http://drinventor.dia.fi.upm.es/api/0.2/items/11111111-2222-
3333-4444-555555555555 

Response:	

204 No Content 

6.8.4 Create	
A	new	item	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/items/ 

Request:	



	 	 	

Page	71	of	77	
	

curl -i -X POST -H "Content-Type: application/json" -d '{ "title": "Guided Visibility 
Sampling", "format" : "pdf", "description" : "Journal Paper with Conference Talk" }' 
http://drinventor.dia.fi.upm.es/api/0.2/items  

Response:	

200 Accepted 

{ 

    "uri": "http://drinventor.eu/items/3d369b1cc69f0e0449dcf5126238f74" 

} 

6.8.5 Remove	
Delete	the	items	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/items/<item-id> 

Request:	 	

curl -i -X DELETE   
http://drinventor.dia.fi.upm.es/api/0.2/items/3d369b1cc69f0e0449dcf5126238f74 

Response:	

204 No Content 

6.8.6 Remove	All	
Delete	all	the	item	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/items 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/items 

Response:	

204 No Content 

6.9 Parts	
A	part	is	a	logical	section	of	text	in	an	item.	

6.9.1 List	
List	of	parts	recorded	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/parts 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/parts 

Response:	



	 	 	

Page	72	of	77	
	

200 OK 

[  
   "http://drinventor.eu/parts/c6632036e43a12a63e52c56830d9a292",  
   "http://drinventor.eu/parts/6e9cd55a3f6259d141536cc276023235",  
   "http://drinventor.eu/parts/3d369b1cc69f0e0449dcf5126238f74",  
   "http://drinventor.eu/parts/63b730658ccf01bb0576c78ba42f2ec8",  
   "http://drinventor.eu/parts/40cc66e646ca419856099730544557c2",  
   "http://drinventor.eu/parts/d1fa1030951fab4ee2a0b72c1f2b60bb", 
… 
] 

6.9.2 Read	
Details	about	the	part	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/parts/<part-id> 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/parts/11111111-2222-3333-4444-
555555555555 

Response:	

200 OK 

{ 

  "sense": "discussion", 

  "description": "Evaluation and Comparison of results" 

} 

6.9.3 Update		
Update	the	existing	instance	of	a	part.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/parts/<part-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "sense": "conclusion", "description" 
: "Evaluation of the results" }' http://drinventor.dia.fi.upm.es/api/0.2/parts/11111111-2222-
3333-4444-555555555555  

Response:	

204 No Content 

6.9.4 Create	
A	new	part	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/parts/ 

Request:	 	



	 	 	

Page	73	of	77	
	

curl -i -X POST -H "Content-Type: application/json" -d '{ "sense": "method", "description" : 
"Description of the solution" }' http://drinventor.dia.fi.upm.es/api/0.2/parts  

Response:	

200 Accepted 

{ 

    "uri": "http://drinventor.dia.fi.upm.es/api/0.2/parts/11111111-2222-3333-4444-
555555555555" 

} 

6.9.5 Remove	
Delete	the	part	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/parts/<part-id> 

Request:	 	

curl -i -X DELETE   http://drinventor.dia.fi.upm.es/api/0.2/parts/11111111-2222-3333-
4444-555555555555 

Response:	

204 No Content 

6.9.6 Remove	All	
Delete	all	the	part	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/parts 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/parts 

Response:	

204 No Content 

6.10 Words	
A	word	is	a	term	or	an	entity	(i.e.	person,	organization	and	place)	or	any	other	meaningful	unit	of	
text	contained	in	a	part	and/or	an	item.	

6.10.1 List	
List	of	words	recorded	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/words 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/words 



	 	 	

Page	74	of	77	
	

Response:	

200 OK 

[  
   "http://drinventor.eu/words/9624e87065736f776bf6c4ce5db7ab0e",  
   "http://drinventor.eu/words/82d65a575279b463b10fbb964ee0f7a9",  
   "http://drinventor.eu/words/f484570d7cf557020e11ace406901b10",  
   "http://drinventor.eu/words/b891b62ab9be7813b9c97aec94a62fff", 
   … 
] 

6.10.2 Read	
Details	about	the	word	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/words/<word-id> 

Particular	search	options	can	be	defined	such	as	filtering,	sorting,	field	selection	and/or	paging,	as	
described	in	the	Parameters	Section.	

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/words/9624e87065736f776bf6c4ce5db7ab0e 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/words/9624e87065736f776bf6c4ce5db7ab0e", 

  "creationTime" : "2016-10-11T12:06+0000", 

  "content" : "stroke" 

} 

6.10.3 Update		
Update	the	existing	instance	of	a	word.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/words/<word-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "content": "multi-element"}' 
http://drinventor.dia.fi.upm.es/api/0.2/words/11111111-2222-3333-4444-555555555555 

Response:	

204 No Content 

6.10.4 Create	
A	new	word	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/words/ 



	 	 	

Page	75	of	77	
	

Request:	 	

curl -i -X POST -H "Content-Type: application/json" -d '{ "content": "pixel"}' 
http://drinventor.dia.fi.upm.es/api/0.2/words 

Response:	

200 Accepted 

{ 

    "uri": " http://drinventor.dia.fi.upm.es/api/0.2/words/11111111-2222-3333-4444-
555555555555" 

} 

6.10.5 Remove	
Delete	the	word	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/words/<word-id> 

Request:	 	

curl -i -X DELETE   http://drinventor.dia.fi.upm.es/api/0.2/words/11111111-2222-3333-
4444-555555555555 

Response:	

204 No Content 

6.10.6 Remove	All	
Delete	all	the	word	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/words 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/words 

Response:	

204 No Content 

6.11 Topics	
A	topic	is	a	set	of	words	related	in	a	domain.	

6.11.1 List	
List	of	topics	recorded	in	the	system.	

GET http://drinventor.dia.fi.upm.es/api/0.2/topics 

Request:	

curl -i -X GET  http://drinventor.dia.fi.upm.es/api/0.2/topics 



	 	 	

Page	76	of	77	
	

Response:	

200 OK 

[  
    "http://drinventor.eu/topics/7cfeec00ca747794685ef9a2c30a9544",  
    "http://drinventor.eu/topics/f3f9a7cf1ee2c74376a4f544332c18c5",  
    "http://drinventor.eu/topics/9c40b8ee2eaea488fd9a45f23643c841", 
… 
] 

6.11.2 Read	
Details	about	the	topic	identified	by	a	URI.	

GET http://drinventor.dia.fi.upm.es/api/0.2/topics/<topic-id> 

Particular	search	options	can	be	defined	such	as	filtering,	sorting,	field	selection	and/or	paging,	as	
described	in	the	Parameters	Section.	

Request:	

curl -i -X GET  
http://drinventor.dia.fi.upm.es/api/0.2/topics/7cfeec00ca747794685ef9a2c30a9544 

Response:	

200 OK 

{ 

  "uri" : "http://drinventor.eu/topics/7cfeec00ca747794685ef9a2c30a9544", 

  "creationTime" : "2016-10-11T12:06+0000", 

  "content" : "path,figure,shape,surface,sample,function,image,lens,model,point" 

} 

6.11.3 Update	
Update	the	existing	instance	of	a	topic.	

PUT http://drinventor.dia.fi.upm.es/api/0.2/topics/<topic-id> 

Request:	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "content": 
"path,figure,shape,surface"}' http://drinventor.dia.fi.upm.es/api/0.2/topics/11111111-2222-
3333-4444-555555555555 

Response:	

204 No Content 

6.11.4 Create	
A	new	topic	will	be	created.		

POST http://drinventor.dia.fi.upm.es/api/0.2/topics/ 



	 	 	

Page	77	of	77	
	

Request:	 	

curl -i -X PUT -H "Content-Type: application/json" -d '{ "content": 
"path,figure,shape,surface"}' http://drinventor.dia.fi.upm.es/api/0.2/topics 

Response:	

200 Accepted 

{ 

    "uri": " http://drinventor.dia.fi.upm.es/api/0.2/topics/11111111-2222-3333-4444-
555555555555" 

} 

6.11.5 Remove	
Delete	the	topic	identified	by	a	URI.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/topics/<topic-id> 

Request:	 	

curl -i -X DELETE   http://drinventor.dia.fi.upm.es/api/0.2/topics/11111111-2222-3333-
4444-555555555555 

Response:	

204 No Content 

6.11.6 Remove	All	
Delete	all	the	topic	instances	recorded	in	the	system.	

DELETE http://drinventor.dia.fi.upm.es/api/0.2/topics 

Request:	

curl -i -X DELETE  http://drinventor.dia.fi.upm.es/api/0.2/topics 

Response:	

204 No Content 

	

	

	

 


